검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 45

        1.
        2025.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 무인기로 촬영한 다중분광 영상으로부터 취득한 반사값을 통해 산출된 식생지수로 콩(Glycine max (L.) Merr.)의 경태를 추정하는 머신러닝 회귀모델 개발을 목표로 한다. 연구 대상은 경상남도 밀양시 국립식량과학원 남부작물부 실험포장에서 2022년 6월 20일과 2023년 6월 24일에 파종한 선풍 품종의 콩이며, 관행구와 처리구로 나누어 재배하였다. 생육조사는 2022년 8월 20일과 9월 20일, 2023년 8월 21일과 9월 25일에 수행하였고, 영상은 2022년 8월 22일과 9월 21일, 2023년 8월 22일과 9월 20일에 촬영하였다. 촬영된 영상으로부터 5가지 반사값을 추출하여 9가지 식생지수를 산출하였다. 모델 구축에는 Ridge Regression (RR)과 LASSO Regression (LR), Random Forest Regression (RFR)과 K-Nearest Neighbor Regression (KNR)을 사용하였고, 단계적 변수 선택법을 사용하였다. 훈련과 검증의 비율은 8:2, 7:3, 6:4로 설정하였고, 모델은 R2, RMSE, MAPE로 평가하였다. 단년차 월별 모델의 경우, 8월과 9월 모두 2023년의 모델이 좋은 모델로 선정되었다. 다년차 월별 모델의 경우, 환경적 조건에 편중되어 군집화 현상이 나타나는 경우(8월)와 통계적으로 유의한 차이가 있음에도 불구하고 군집화 현상이 나타나지 않는 경우(9월)가 확인되었다. 따라서 월별 모델에 비해 성능은 낮지만 군집화가 발생하지 않고, 더 많은 샘플 수를 가진 전체 통합 모델을 최적 모델로 선택하였고, Calibration에서 R2=0.916, RMSE=0.683mm, MAPE=5.644%, Validation에서 R2=0.708, RMSE=1.002mm, MAPE=8.957% 의 성능을 나타내었다.
        4,000원
        2.
        2025.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study estimated whole crop maize (WCM; Zea mays L.) yield damage under abnormal climate conditions using a machine-learning approach based on Representative Concentration Pathway (RCP) 8.5 and visualized the results as spatial maps. A total of 3,232 WCM observations were compiled, and climate data were obtained from the Korea Meteorological Administration (KMA) Open Data Portal. The machine learning model used DeepCrossing. Dry matter yield (DMY) was predicted using the DeepCrossing model and climate data from the Automated Synoptic Observing System (ASOS; 95 stations). The calculation of damage was the difference between the DMYnormal and DMYabnormal. The normal climate was set as the 40-year of climate data according to the year of WCM data (1978-2017). The level of abnormal climate by temperature and precipitation was set as RCP 8.5 standard. The predicted DMYnormal ranged from 13,845-19,347 kg/ha. The damage from WCM varied by region and the severity of abnormal climate, including abnormal temperature and precipitation. Under abnormal temperature conditions, damage in 2050 and 2100 ranged from –243 to –133 and –1,797 to –245 kg/ha, respectively. Under abnormal precipitation conditions, damage in 2050 and 2100 ranged from –2,998 to 1,447 and –11,308 to 29 kg/ha, respectively. Overall, DMY of WCM tended to increase with higher mean monthly temperature. The damage calculated through the RCP 8.5 standard was presented as a spatial distribution using QGIS. Although this study used an RCP scenario based on greenhouse gas concentrations, further research is needed to apply an integrated Shared Socioeconomic Pathway (SSP) that accounts for socioeconomic factors.
        4,000원
        3.
        2025.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the seismic fragility of nuclear power plant (NPP) auxiliary structures by incorporating material aging deterioration into machine learning–based response prediction models. An artificial neural network (ANN) was developed using 17 seismic and material parameters, achieving high predictive accuracy (R2 = 0.96) while significantly reducing computational demands compared with conventional finite element analyses. By combining the ANN with Monte Carlo simulations, fragility curves for Motor Control Center (MCC) cabinet anchors were derived at resonance frequencies of 10 Hz and 15 Hz. Results indicate that equipment with higher resonance frequency (15 Hz) exhibits lower seismic vulnerability due to reduced sensitivity to dominant low-frequency seismic components. When material deterioration was introduced, fragility curves shifted toward lower ground motion intensities, reflecting increased failure probabilities and approximately 20% reduction in median seismic capacity. These findings highlight the necessity of considering aging effects in probabilistic seismic risk assessments and demonstrate the efficiency of ML-based surrogate models for quantifying long-term safety margins of NPP structures.
        4,000원
        4.
        2025.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        과도한 조류 발생은 수생태계 교란과 수질 악화를 초래하는 대표적인 환경 문제로, 효과적인 관리와 대응을 위해 정확한 예측이 필요하다. 우리나라는 사계절의 기후 특성이 뚜렷하며, 수온이 상승하는 하절기에 조류 발생이 집중되는 경향을 보인다. 이에 따라 실시간 모니터링 자료는 대부분 저농도 상태가 유지되어 데이터 불균형 문제가 발생한다. 본 연구에서는 chlorophyll-a 농도를 기준으로 하천 현장의 조류 발생 수준을 Class 1 (Chl-a ≤ 10 ㎍/L), Class 2 (10 < Chl-a ≤ 50 ㎍/L), Class 3 (Chl-a > 50 ㎍/L)와 같이 3개의 class로 구분하고, 대표적인 앙상블 머신러닝 모형인 extreme gradient boosting (XGB) 알고리즘을 이용하여 조류 발생 수준을 예측하는 분류 모형을 구축하였다. 데이터 불균형 해소를 위해 생성형 인공지능 기반 알고리즘인 conditional generative adversarial network (CGAN)과 전통적인 데이터 보강 알고리즘인 synthetic minority over-sampling technique (SMOTE), 그리고 딥러닝 기반 기법인 autoencoder (AE)를 활용한 3가지 데이터 보강 알고리즘을 활용하여 데이터의 불균형을 개선한 자료를 생성하고 이를 XGB 모형에 적용하여 성능 변화를 비교하였다. 분석 결과 macro average 기준으로 원본 데이터를 사용한 모형의 recall은 0.606이었으나 SMOTE, AE 및 CGAN의 recall은 각각 0.666, 0.682, 0.720으로 크게 개선되었고, F1 score도 데이터 불균형 해소를 통해 약 7–13%의 성능이 향상되는 등 전체적으로 데이터 불균형 해소로 모형의 성능이 향상되었으며 CGAN이 가장 우수한 성능 개선 효과를 보이는 것으로 나타냈다. 본 연구의 결과를 통해 데이터 불균형 해소를 통한 머신러닝 모형 성능 개선 가능성을 확인하였다.
        4,300원
        5.
        2025.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study developed a QSAR regression model using the XGBoost machine learning algorithm to predict the acute aquatic toxicity of highly hazardous PCBs. EC50 values for Daphnia magna were obtained from QSAR Toolbox 4.7. Input features consisted of approximately 3,000 molecular descriptors and fingerprints generated from official structure data using RDKit and the Morgan algorithm, excluding mixtures. The dataset was split into training and test sets (7 : 3) based on 500,000 randomized seeds, and the most balanced combination was selected using Kolmogorov-Smirnov and Wilcoxon rank-sum tests. Z-score standardization was applied based on the training set, and the XGBoost model was trained using 5-fold cross-validation with grid search optimization. The final model showed excellent predictive performance (R2 =0.97, RMSE= 0.19). A simplified model using only the top 10 predictive molecular features retained approximately 95% of the original accuracy while improving interpretability and efficiency. The model was applied to 38 PCB compounds lacking EC50 values, and the predicted values showed a statistically similar distribution to the measured group, with only minor differences in a few structural fingerprints. These results demonstrate the applicability of XGBoost-based models for reliable toxicity prediction and offer a promising alternative approach for assessing the environmental risk of untested PCBs.
        4,000원
        6.
        2025.09 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        In this study, chemicals with acute toxicity experimental data were selected as research subjects, and compareed the model derived from statistical analysis and QSAR open-source programs. The physical and chemical properties, dynamic behaviors, and toxicological estimates of the chemicals were calculated using Mordred, a molecular descriptor calculation program based on RDKit. LD50 was set as the toxicity comparison target for each chemical, and independent variables or factors with similarity to independent variables were estimated from the molecular descriptors calculated through Mordred. Molecule descriptors composed of independent variables were compared to predictions from QSAR open-source models, A regression model was created with the selected molecule descriptors and compared with predictions from QSAR programs, confirming high accuracy for specific functional groups. The QSAR model created in this study considers the characteristics and experimental values of each chemical, and provides evidence for selecting variables when constructing toxicity data for machine learning applications.
        4,000원
        7.
        2025.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        목적 : 본 연구는 지역사회 거주 장애 노인을 대상으로 개인-환경 간 상호작용을 반영한 거주 적합성(Livability) 평가에 기반하여 결정 트리 기반 머신러닝 알고리즘의 결과를 활용하여 가정환경 수정 중재를 제공하고 효과성을 검증하고자 하 였다. 연구방법 : 연구참여자는 지역사회 거주 장애 노인 9명이었으며, 중재는 총 4회기(주 1회, 40분)로 구성되었다. 거주 적합 성(Livability Scale), 작업수행능력(COPM), 목표성취(GAS), 삶의 질(WHOQOL-BREF)은 사전, 사후, 추적의 세 시점 에서 평가되었으며, 추적 평가는 중재 종료 3개월 후에 실시되었다. 중재는 Livability Scale을 활용하여 결정 트리 기반 머신러닝 알고리즘(Random Forest)을 활용한 변수 중요도(feature importance)로 거주 부적합 항목을 식별하여 중재의 우선순위로 활용하였다. 분석은 세 시점에서 반복측정된 자료를 SPSS 26.0을 사용하여 Friedman 검정 및 Bonferroni 사후 비교를 통해 분석하였다. 결과 : 분석 결과, 거주 적합성의 환경, 작업, 수행 영역과 작업수행능력, 목표성취도, 삶의 질의 하위 영역에서 통계적으 로 유의미한 향상이 나타났다. COPM 만족도는 모든 시점에서 유의하게 증가하여 중재 효과의 지속 가능성을 확인하였다. 결론 : 가정환경 수정에서 개인–환경 상호작용을 반영한 정량적 평가와 머신러닝 기반의 예측 모형을 활용하여 중재의 실 효성을 높일 수 있는 실증적 근거를 제공한다. 이를 통해 장애 노인을 포함한 다양한 취약계층을 위한 맞춤형 주거 중재 및 정책 개발에 기초자료로 활용될 수 있을 것이다.
        4,900원
        8.
        2025.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 성장 단계별 돼지의 평균 사료 섭취량을 추정하고, 각 매개변수 간의 상관분석을 통해 변수를 선별한 후, 기계학습 기반 회귀분석을 통해 돼지의 사료 섭취량(FI)을 예측하는 모델을 만들고자 한다. 본 실험은 2023년 9월 14일부터 2023년 12월 15일까지 93일 동안 진행하였다. 사료는 09:00와 17:00 하루에 2회 제공하였으며, 제공된 사료의 양은 돼지의 평균 체중의 5%를 지급하였다. 돼지의 몸무게(PBW)는 매일 09:00에 이동식 돈형기를 사용하여 측정하였다. 축산환경관리시스템(LEMS) 센서를 이용하여, 돈사 내 온도(RT), 상대습도(RH), NH3를 5분 간격으로 수집하였다. 성장 단계를 3단계로 나누었으며, 각 GS1, GS2 및 GS3으로 명명하였다. 각 성장 단계별 평균 사료 섭취량과 표준편차를 구하여, 유의미성과 성장 단계별 사료 섭취의 경향을 분석하였다. 각 모델의 성능평가( , RMSE, MAPE) 시 8:2의 비율로 데이터를 분할하여, 정확도 검증을 수행하였다. 연구 결과 성장 단계별 돼지의 사료 섭취량에 유의미한 차이(p < 0.05)가 있음과 돼지가 성장할수록 일정한 양의 사료를 섭취하는 것을 확인하였다. 또한 각 변수의 상관분석 시 FI와 PBW에서 강한 상관관계가 나타났으며(R > 0.94), 각 모델의 성능평가 결과 RFR 모델이 가장 높은 정확성(  = 0.959, RMSE = 195.9, MAPE = 5.739)을 보였다.
        4,000원
        9.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study examines career trajectories among women with career breaks, using data from the 2019 National Survey of Women on Career Breaks (n=1,138). The data underwent preprocessing, including outlier detection, feature scaling, and class imbalance correction with SMOTEENN. Three machine learning models were evaluated, with the Random Forest model achieving the best performance. Key predictors included flexible leave policies, social insurance, remote work options, and job security. The findings highlight the importance of supportive organizational policies in retaining female employees. Future research should explore longitudinal impacts and additional variables like organizational culture.
        4,000원
        10.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study develops a model to determine the input rate of the chemical for coagulation and flocculation process (i.e. coagulant) at industrial water treatment plant, based on real-world data. To detect outliers among the collected data, a two-phase algorithm with standardization transformation and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is applied. In addition, both of the missing data and outliers are revised with linear interpolation. To determine the coagulant rate, various kinds of machine learning models are tested as well as linear regression. Among them, the random forest model with min-max scaled data provides the best performance, whose MSE, MAPE, R2 and CVRMSE are 1.136, 0.111, 0.912, and 18.704, respectively. This study demonstrates the practical applicability of machine learning based chemical input decision model, which can lead to a smart management and response systems for clean and safe water treatment plant.
        4,000원
        11.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Dynamic responses of nuclear power plant structure subjected to earthquake loads should be carefully investigated for safety. Because nuclear power plant structure are usually constructed by material of reinforced concrete, the aging deterioration of R.C. have no small effect on structural behavior of nuclear power plant structure. Therefore, aging deterioration of R.C. nuclear power plant structure should be considered for exact prediction of seismic responses of the structure. In this study, a machine learning model for seismic response prediction of nuclear power plant structure was developed by considering aging deterioration. The OPR-1000 was selected as an example structure for numerical simulation. The OPR-1000 was originally designated as the Korean Standard Nuclear Power Plant (KSNP), and was re-designated as the OPR-1000 in 2005 for foreign sales. 500 artificial ground motions were generated based on site characteristics of Korea. Elastic modulus, damping ratio, poisson’s ratio and density were selected to consider material property variation due to aging deterioration. Six machine learning algorithms such as, Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Artificial Neural Networks (ANN), eXtreme Gradient Boosting (XGBoost), were used t o construct seispic response prediction model. 13 intensity measures and 4 material properties were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks present good prediction performance considering aging deterioration.
        4,000원
        12.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 돼지 간 거리(PD), 돈사 내 상대 습도(RRH), 돈사 내 이산화탄소(RCO2) 세 가지 변수를 사용하여, 네 개의 데이터 세트를 구성하고, 이를 다중 선형 회귀(MLR), 서포트 벡터 회귀(SVR) 및 랜덤 포레스트 회귀(RFR) 세 가지 모델 기계학습(ML)에 적용하여, 돈사 내 온도(RT)를 예측하고자 한다. 2022년 10월 5일부터 11월 19일까지 실험을 진행하였다. Hik-vision 2D카메라를 사용하여, 돈사 내 영상을 기록하였다. 이후 ArcMap 프로그램을 사용하여, 돈사 내 영상에서 추출한 이미지 안 돼지의 PD를 계산하였다. 축산환경관리시스템(LEMS) 센서를 사용하여, RT, RRH 및 RCO2를 측정하였다. 연구 결과 각 변수 간 상관분석 시 RT와 PD 간의 강한 양의 상관관계가 나타났다(r > 0.75). 네 가지 데이터 세트 중 데이터 세트 3을 사용한 ML 모델이 높은 정확도가 나타났으며, 세 가지 회귀 모델 중에서 RFR 모델이 가장 우수한 성능을 보였다.
        4,000원
        13.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Machine learning is widely applied to various engineering fields. In structural engineering area, machine learning is generally used to predict structural responses of building structures. The aging deterioration of reinforced concrete structure affects its structural behavior. Therefore, the aging deterioration of R.C. structure should be consider to exactly predict seismic responses of the structure. In this study, the machine learning based seismic response prediction model was developed. To this end, four machine learning algorithms were employed and prediction performance of each algorithm was compared. A 3-story coupled shear wall structure was selected as an example structure for numerical simulation. Artificial ground motions were generated based on domestic site characteristics. Elastic modulus, damping ratio and density were changed to considering concrete degradation due to chloride penetration and carbonation, etc. Various intensity measures were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks and extreme gradient boosting algorithms present good prediction performance.
        4,000원
        14.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        작물의 스트레스 조기 진단은 농업에 있어 빠른 대응을 가능하게 해 피해를 경감시킬 수 있어 중요한 기술이다. 기존의 스트레스 진단이 가진 파괴적인 형식의 시료 채집과 양분 분석에 많은 노동력을 필요로 한다는 단점 극복을 위해 새로운 기술 개발이 필요하다. 미래에는 대단위 영상을 이용한 생육 진단 기술에 대한 수요가 높아질 것으로 예상되어 이를 이용한 연구를 진행하였다. 본 연구는 2023년 경상남도 밀양시에 위치한 국립식량과학원 실험 포장에서 수행되었으며, 무인항공기(UAV)를 이용하여 양분 결핍 처리(관행시비, 질소 결핍, 인 결핍, 칼륨 결핍, 무비)에 따른 벼의 생육을 조사했다. UAV를 이용해 생육 기간 중 총 6회에 걸쳐 포장을 촬영하였고, 영상을 기반으로 11개의 식생 지수를 산출하여 기계학습을 통해 양분 결핍을 진단하는 모델을 구축하여 평가했다. 연구 결과에 따르면, 엽록소 함량과 관련된 지수인 NDRE (Normalized Difference Red Edge)가 가장 높은 중요도를 나타내어 벼의 양분 상태를 효과적으로 진단하는 데 유용하다는 것을 확인하였다. 6개의 각 단계별로 모델을 평가하였을 때 모든 단계에서 accuracy가 0.7 이상으로 나타났다. 조기 진단을 위해 첫 촬영 날짜인 7월 5일의 자료로 모델을 만들어 다른 회차에 적용하여 모델의 성능을 평가한 결과, 5개의 모든 단계에서 0.9 이상의 accuracy를 얻었다. 종합적으로, UAV 영상 기반의 식생 지수를 활용한 양분 결핍 진단은 벼의 생육을 조기에 예측하는 데 효과적이며, 이는 정밀 농업 분야에서 시간과 노동을 절감하고 양분 관리를 개선하는 데 도움이 될 것으로 기대된다.
        4,300원
        16.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : To enhance the accuracy of predicting the compressive strength of practical concrete mixtures, this study aimed to develop a machine learning model by utilizing the most commonly employed curing age, specifically, the 28-day curing period. The training dataset consisted of concrete mixture sample data at this curing age, along with samples subjected to a total load not exceeding 2,350 kg. The objective was to train a machine learning model to create a more practical predictive model suitable for real-world applications. METHODS : Three machine learning models—random forest, gradient boosting, and AdaBoost—were selected. Subsequently, the prepared dataset was used to train the selected models. Model 1 was trained using concrete sample data from the 28th curing day, followed by a comprehensive analysis of the results. For Model 2, training was conducted using data from the 28th day of curing, focusing specifically on instances where the total load was 2,350 kg or less. The results were systematically analyzed to determine the most suitable machine learning model for predicting the compressive strength of concrete. RESULTS : The machine learning model trained on concrete sample data from the 28th day of curing with a total weight of 2,350 kg or less exhibited higher accuracy than the model trained on weight-unrestricted data from the 28th day of curing. The models were evaluated in terms of accuracy, with the gradient boosting, AdaBoost, and random forest models demonstrating high accuracy, in that order. CONCLUSIONS : Machine learning models trained using concrete mix data based on practical and real-world scenarios demonstrated a higher accuracy than models trained on impractical concrete mix data. This case illustrates the significance of not only the quantity but also the quality of the data during the machine learning training process. Excluding outliers from the data appears to result in better accuracy for machine learning models. This underscores the importance of using high-quality and practical mixed concrete data for reliable and accurate model training.
        4,000원
        17.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, an optimal model for compressive strength prediction was derived by learning and directly comparing several machine learning models based on the same data. METHODS : Approximately 478 pieces of concrete compressive strength data were obtained to compare the performance of the machine learning models. In addition, five machine learning models were trained based on the obtained data. The performance of the learned model was compared using three performance indicators. Finally, the performance of the model trained using additional data was reviewed. RESULTS : As a result of comparing the performance of machine learning models, the XGB(eXtra Gradient Boost) model showed the best performance. In addition, as a result of the verification based on additional data, highly reliable results can be obtained if the XGB model is used to predict the compressive strength of concrete. CONCLUSIONS : If a concrete strength prediction model is derived based on a machine learning model, a highly reliable model can be derived.
        4,000원
        18.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Construction cost estimates are important information for business feasibility analysis in the planning stage of road construction projects. The quality of current construction cost estimates are highly dependent on the expert's personal experience and skills to estimate the arithmetic average construction cost based on past cases, which makes construction cost estimates subjective and unreliable. An objective approach in construction cost estimation shall be developed with the use of machine learning. In this study, past cases of road projects were analyzed and a machine learning model was developed to produce a more accurate and time-efficient construction cost estimate in teh planning stage. METHODS : After conducting case analysis of 100 road construction, a database was constructed including the road construction's details, drawings, and completion reports. To improve the construction cost estimation, Mallow's Cp. BIC, Adjusted R methodology was applied to find the optimal variables. Consequently, a plannigs-stage road construction cost estimation model was developed by applying multiple regression analysis, regression tree, case-based inference model, and artificial neural network (ANN, DNN). RESULTS : The construction cost estimation model showed excellent prediction performance despite an insufficient amount of learning data. Ten cases were randomly selected from the data base and each developed machine learning model was applied to the selected cases to calculate for the error rate, which should be less than 30% to be considered as acceptable according to American Estimating Association. As a result of the analysis, the error rates of all developed machine learning models were found to be acceptable with values rangine from 17.3% to 26.0%. Among the developed models, the ANN model yielded the least error rate. CONCLUSIONS : The results of this study can help raise awareness of the importance of building a systematic database in the construction industry, which is disadvantageous in machine learning and artificial intelligence development. In addition, it is believed that it can provide basic data for research to determine the feasibility of construction projects that require a large budget, such as road projects.
        4,000원
        19.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Numerous factors contribute to the deterioration of reinforced concrete structures. Elevated temperatures significantly alter the composition of the concrete ingredients, consequently diminishing the concrete's strength properties. With the escalation of global CO2 levels, the carbonation of concrete structures has emerged as a critical challenge, substantially affecting concrete durability research. Assessing and predicting concrete degradation due to thermal effects and carbonation are crucial yet intricate tasks. To address this, multiple prediction models for concrete carbonation and compressive strength under thermal impact have been developed. This study employs seven machine learning algorithms—specifically, multiple linear regression, decision trees, random forest, support vector machines, k-nearest neighbors, artificial neural networks, and extreme gradient boosting algorithms—to formulate predictive models for concrete carbonation and thermal impact. Two distinct datasets, derived from reported experimental studies, were utilized for training these predictive models. Performance evaluation relied on metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analytical outcomes demonstrate that neural networks and extreme gradient boosting algorithms outshine the remaining five machine learning approaches, showcasing outstanding predictive performance for concrete carbonation and thermal effect modeling.
        4,000원
        20.
        2023.10 구독 인증기관·개인회원 무료
        모기는 감염병을 매개하는 종으로 전염병 확산 억제를 위해서는 개체수의 감시와 정확한 예측이 필요하다. 본 연구에서는 모기 개체수 및 기상 및 현장 자료를 활용해 모기 개체수 머신러닝 모델을 개발하였다. 모기 개체수는 디지털 모기 측정기(Digital Mosquito Monitoring System, DMS)의 2015 년~2022년의 5월~10월의 자료를 활용하였다. 기상 자료는 기온, 강수량, 풍속, 습도를 사용하였으며, 현장 조사 자료는 현장을 명목척도와 서열척도로 나누어 기록하여, 명목 척도의 경우 원핫 인코딩으 로 변환해 수치화하여 사용하였다. 분석에 사용된 머신러닝 모델은 Artificial Neural Network, Random Forest, Gradient Boosting Machine, Support Vector Machine이며 성능지표로 R2, RMSE를 사용하였다. 연구 결과, Gradient Boosting 모델이 R2 0.4, RMSE 22.45로 가장 좋은 성능을 나타냈다. 현장 조사 자료 를 분석에 활용하였을 때 R2는 증가하였고, RMSE는 감소하였다. 본 연구 결과 모기 개체수에 현장 조사 자료가 예측 정확도를 향상시킬 수 있음을 확인하였다.
        1 2 3