The ability to both assay the presence of, and to selectively remove ions in a solution is an important tool for waste water treatment in many industrial sectors, especially the nuclear industry. Nuclear waste streams contain high concentrations of heavy metals ions and radionuclides, which are extremely toxic and harmful to the environment, wildlife and humans. For the UK nuclear industry alone, it is estimated that there will be 4.9 million metric tonnes of radioactive waste by 2125, which contains a significant number of toxic radionuclides and heavy metals. This is exacerbated further by increased international growth of nuclear new build and decommissioning. Efforts to remove radionuclides have been focused on the development and optimisation of current separation and sequestering techniques as well as new technologies. Due to the large volumes of waste the techniques must be economical, simple to use and highly efficient in application. Magnetic nanoparticles (MNPs) offer a powerful enhancement of normal ion exchange materials in that they can be navigated to specific places using external magnetic fields and hence can be used to investigate challenges such as, pipework in preparation of decommissioning projects. They also have the potential to be fine-tuned to extract a variety of other radionuclides and toxic heavy metals. It has been demonstrated that with the right functional groups these particles become very strongly selective to radionuclides, such as Uranium. However, this new technology also has the potential to effectively aid nuclear waste remediation at a low cost for the separation of both radionuclides and heavy metals. In this work, we investigate the origin of the selectivity of superparamagnetic iron oxide nanoparticles (SPIONs) to Uranium by making systematic changes to the existing surface chemistry and determining how these changes influence the selectivity. Identifying the mechanism by which selected common nuclear related metals, such as Na(I), K(I), Cs(I), Ca(II), Cu(II), Co(II), Ni(II), Cd(II), Mg(II), Sr(II), Pb(II), Al(III), Mn(II), Eu(III) and Fe(III), are sorbed will allow for specific NP-target (nanoparticle) ion interactions to be revealed. Ultimately this understanding will provide guidance in the design of new targeted NP-ligand constructs for other environmental systems.
The pitch-based activated carbon fibers (ACFs) were prepared from ethylene tar-derived pitches containing nickelocene (CNi) or nickel nitrate (NiN). The effects of different anions and contents of metal salts on the microstructure and surface chemical properties of fibers were investigated. The results revealed that Ni2+ from CNi mainly remained its pristine molecule in the organometal salt-derived pitch (OP-xCNi), while Ni2+ from NiN occurred complexation reaction with polycyclic aromatic hydrocarbons (PAHs) in the inorganic metal salt-derived pitch (IP-xNiN) due to the weaker binding ability between anions and Ni2+ of CNi than CNi. The XRD and SEM results confirmed that IP-3NiN-ACF contained Ni, NiO, Ni2O3 nanoparticles with different size distributions, while OP-3CNi-ACF only contained more uniformly distributed Ni nanoparticles with small size. Furthermore, OP-3.0CNi-ACF presented higher specific surface area of 1862 m2/ g and a pore volume of 1.69 cm3/ g than those of IP-3.0NiN-ACF due to the formation of pore structure during the in-situ catalytic activation of different metal nanoparticles. Therefore, this work further pointed out that the desired pore structure and surface chemistry of pitch-based ACFs could be obtained through regulating and controlling the interaction of anion species, metal cations and PAHs during the synthesis of pitch precursors.
In this study, lenses are fabricated using various nanomaterials as additives to a silicone polymer made with an optimum mixing ratio and short polymerization time. In addition, PVP is added at a ratio of 1% to investigate the physical properties according to the degree of dispersion, and the compatibility with hydrophobic silicone and the possibility of application as a functional lens material are confirmed. The main materials are SIU as a silicone monomer, DMA, a hydrophilic copolymer, EGDMA as a crosslinking agent, and 2H2M as a photoinitiator. Holmium (III) oxide, Europium (III) oxide, aluminum oxide, and PVP are used. When Holmium (III) oxide and Europium (III) oxide are added based on the Ref sample, the characteristics of the lens tend to be similar overall, and the aluminum oxide shows a tendency slightly different from the previous two oxides. This material can be used as a silicone lens material with various nano oxides and polyvinylpyrrolidone (PVP) acting as a dispersant.
본 연구에서는 수용성 도료의 내수성을 향상시키기 위해 isophorone diisocyanate을 sodium bisulfate와 반응시 켜 블록화된 diisocyanate를 제조하였으며, 초임계이산화탄소를 용매로 사용하여 금속산화물 나노 파티클을 실란커플링 제로 표면 개질하였다표면개질된 나노입자. 그리고, 수용성 도료에 표면개질된 나노입자ball mill을 이용해 표면개질 된 나노입자를 분산시켜 광택도 및 비극성수지와의 결합을 조절하였다. 블록화된 diisocyanate는 FT-IR 측정 결과 isocyanate 그룹이 완전히 사라진 것을 볼 수 있었고, DSC의 측정결과, 150 ℃ 이상의 온도에서 탈 블록화하여 diisocyanate를 재형성하는 것을 확인할 수 있었다. 수용성 블록화된 diisocyanate를 접착제에 0.5 wt% 첨가하였을 때 높은 접착성능 및 향상된 내수성을 확보할 수 있었고, 표면개질된 나노입자표면 개질된 나노입자의 경우 TGA 측정 시 감소된 양은 금속 산화물에 표면 반응한 실란커플링제의 비율로 볼 수 있다. MPS로 개질된 SiO2는 6시간 반응 시 6%, 12시간 반응 시 8%, 24시간 반응 시 10%의 표면 반응을 나타내었다. 표면개질된 나노입자표면 개질된 나노입자를 수용성 도료에 혼합하여 ball milling한 후 도포했을 때 SiO2 표면개질된 나노입자와 TiO2 표면개질된 나노입자는 각각 5GU와 33GU의 광택도를 가지며 표면개질된 나노입자나노입자의 종류에 따라 광택도 조절이 가능하다.
본 연구에서는 수용성 도료의 내후성 및 내광성을 향상 시키고 광택도 및 비극성수지와의 결합을 조절하기 위해 수용성 도료와 표면 개질된 금속 산화물 나노입자를 혼합하여 물성 변화 특성을 연구하였다. SiO2, TiO2를 실란커플링 제로 표면개질 하여 수용성 도료에 혼합하였으며, 볼밀을 이용하여 금속산화물 나노입자를 수용성 도료에 분산 시켰다. (3-Glycidoxypropyl) trimethoxysilane (GPS)로 표면 개질된 금속 산화물 나노입자를 VOC(Volatile Organic Compounds), 저장 안정성 평가 및 광택을 측정하였다.
We have demonstrated the production of thin films containing multilayer graphene-coated copper nanoparticles (MGCNs) by a commercial electrodeposition method. The MGCNs were produced by electrical wire explosion, an easily applied technique for creating hybrid metal nanoparticles. The nanoparticles had average diameters of 10–120 nm and quasi-spherical morphologies. We made a complex-electrodeposited copper thin film (CETF) with a thickness of 4.8 μm by adding 300 ppm MGCNs to the electrolyte solution and performing electrodeposition. We measured the electric properties and performed corrosion testing of the CETF. Raman spectroscopy was used to measure the bonding characteristics and estimate the number of layers in the graphene films. The resistivity of the bare-electrodeposited copper thin film (BETF) was 2.092 × 10–6 Ω·cm, and the resistivity of the CETF after the addition of 300 ppm MGCNs was decreased by 2% to ~2.049 × 10–6 Ω·cm. The corrosion resistance of the BETF was 9.306 Ω, while that of the CETF was increased to 20.04 Ω. Therefore, the CETF with MGCNs can be used in interconnection circuits for printed circuit boards or semiconductor devices on the basis of its low resistivity and high corrosion resistance.
TiO2 and SiO2 inorganic nanoparticles were synthesized with poly(oxyethylene methacrylate)(POEM) and blended with 1-methyl-3-propylimidazolium iodide(MPII), poly(ethylene glycol)(PEG), and iodine(I2) to prepare polymer electrolyte membranes for dye-sensitized solar cells(DSSC). The modified nanoparticles were prepared by the grafting of POEM to TiO2 and SiO2 nanoparticles and put into PEG, MPII and I2 to produce polymer electrolyte membranes. The specific interactions of PEG with the modified nanoparticles in addition to ionic liquid were confirmed by FT-IR spectroscopy and DSC, providing gel formation of electrolytes. The efficiency of DSSC employing TiO2-POEM/PEG/MPII/I2(3.3%) was slightly higher than that employing SiO2-POEM/PEG/MPII/I2(2.9%) due to the different ionic conductivity of electrolytes membrane.
In this study, we prepare polymer solar cells incorporating organic ligand-modified Ag nanoparticles (O-AgNPs) highly dispersed in the P3HT:PCBM layer. Ag nanoparticles decorated with water-dispersible ligands (W-AgNPs) were also utilized as a control sample. The existence of the ligands on the Ag surface was confirmed by FT-IR spectra. Metal nanoparticles with different surface chemistries exhibited different dispersion tendencies. O-AgNPswere highly dispersed even at high concentrations, whereas W-AgNPs exhibited significant aggregation in the polymerlayer. Both dispersion and blending concentration of the Ag nanoparticles in P3HT:PCBM matrix had critical effects onthe device performance as well as light absorption. The significant changes in short-circuit current density (JSC) of thesolar cells seemed to be related to the change in the polymer morphology according to the concentration of AgNPsintroduced. These findings suggested the importance of uniform dispersion of plasmonic metal nanoparticles and theirblending concentration conditions in order to boost the solar cell performance.
has the characteristic is controlling the inhibition or promotion of particle growth by adsorbing onto specific facets of platinum nanoparticles. Therefore, in this study, was added to control the shape of platinum nanoparticles during the liquid phase reduction process. Consequently, platinum cubes were synthesized when of 1.1 mol% (with respect to the Pt concentration) was added into the solution. Platinum octahedrons were synthesized when 32 mol% (with respect to the Pt concentration) was added into the solution. These results demonstrate that the metal salt , effectively controlled the relative growth rates of each facet of Pt nano particles.
Two different schemes were adopted to fabricate ordered macroporous structures with face centered cubic lattice of air spheres. Monodisperse polymeric latex suspension, which was synthesized by emulsifier-free emulsion polymerization, was mixed with metal oxide ceramic nanoparticles, followed by evaporation-induced self-assembly of the mixed hetero-colloidal particles. After calcination, inverse opal was generated during burning out the organic nanospheres. Inverse opals made of silica or iron oxide were fabricated according to this procedure. Other approach, which utilizes ceramic precursors instead of nanoparticles was adopted successfully to prepare ordered macroporous structure of titania with skeleton structures as well as lithium niobate inverted structures. Similarly, two different schemes were utilized to obtain disordered macroporous structures with random arrays of macropores. Disordered macroporous structure made of indium tin oxide (ITO) was obtained by fabricating colloidal glass of polystyrene microspheres with low monodispersity and subsequent infiltration of the ITO nanoparticles followed by heat treatment at high temperature for burning out the organic microspheres. Similar random structure of titania was also fabricated by mixing polystyrene building block particles with titania nanoparticles having large particle size followed by the calcinations of the samples.
최근프린팅기술은 전자부품소재 산업의 대형화 및 저가격화의 해법으로 기대되고 있다. 특히 전자부품소재 프린팅 기술 중 잉크젯공정은 최신 디스플레이용 전극소재, PCB, FPCB 및 기타 소재공정에 이용하려는 움직임이 활발히 진행되고 있다. 그러나 잉크젯 기술은 재료의존도 비중이 높은 기술로서 소재(금속잉크)의 개발이 최우선시 되어야한다. 전자부품소재용 금속잉크에 사용되는 금속 나노입자는 우수한 전기전도성과 산업적응용이 가능해야 한다. 따라서 최근 연구되고