검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        2.
        2019.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study examines the role of the nano- and micro-particle ratio in dispersion stability and mechanical properties of composite resins for SLA(stereolithography) 3D printing technology. VTES(vinyltriethoxysilane)-coated ZrO2 ceramic particles with different nano- and micro-particle ratios are prepared by a hydrolysis and condensation reaction and then dispersed in commercial photopolymer (High-temp) based on interpenetrating networks(IPNs). The coating characteristics of VTES-coated ZrO2 particles are observed by FE-TEM and FT-IR. The rheological properties of VTEScoated ZrO2/High-temp composite solution with different particle ratios are investigated by rheometer, and the dispersion properties of the composite solution are confirmed by relaxation NMR and Turbiscan. The mechanical properties of 3Dprinted objects are measured by a tensile test and nanoindenter. To investigate the aggregation and dispersion properties of VTES-coated ZrO2 ceramic particles with different particle ratios, we observe the cross-sectional images of 3D printed objects using FE-SEM. The 3D printed objects of the composite solution with nano-particles of 80 % demonstrate improved mechanical characteristics.
        4,000원
        3.
        2006.09 구독 인증기관·개인회원 무료
        The decrease of the distance between particle centers due to the growth of the sinter necks can be explained by the well known two-particle model. Unfortunately this model fails to provide a comprehensive description of the processes for 3D specimens. Furthermore, there is a significant discrepancy between the calculated and the measured shrinkage because particle rearrangements are not considered. Only the recently developed analysis of the particle movements inside of 3D specimens using micro focus computed tomography (μCT), combined with photogrammetric image analysis, can deliver the necessary experimental data to improve existing sintering theories. In this work, μCT analysis was applied to spherical copper powders. Based on photogrammetric image analysis, it is possible to determine the positions of all particle centers for tracking the particles over the entire sintering process and to follow the formation and breaking of the particle bonds. In this paper, we present an in-depth analysis of the obtaine data. In the future, high resolution synchrotron radiation tomography will be utilized to obtain in-situ data and images of higher resolution.
        4.
        2006.04 구독 인증기관·개인회원 무료
        Small powder size is very useful in achieving detailed structures. STS 316 nanopowders with an average diameter of 100 nm and were utilized to produce feedstock. The mixing behavior of the feedstock indicated that the nanoparticle feedstock produced the highest mixing torque at various powder loading compared to the micropowder feedstock. The nanoparticles feedstocks showed that elastic properties are dominant in flow behavior and high viscosity. Conversely the micropowders feedstocks, viscous properties are dominant in flow behavior and less viscosity, nanopowders feedstock perform lower flow activation energy than feedstock with bigger particles.
        5.
        2009.08 KCI 등재 서비스 종료(열람 제한)
        In the high precision robot systems, the most popular tasks may be handling of micro-scale objects on a surface such as a micromanipulation robot system. In handling of micro-scale objects, the stiction effect becomes a fundamental issue since the micro-contact mechanics dominates the micromanipulation robot system. In the paper, a theoretical non-stick condition derived from the micro-contact mechanics is carried out for the propose of micro-scale object manipulation. To verify the non-stick condition, a micro-manipulation robot system equipped with a high precision stage system and a microscope system is developed. Experimental results show that the proposed non-stick condition guarantees successful micro-scale object manipulation.