폴리술폰 고분자는 비대칭 정밀여과 멤브레인 제조에 가장 널리 사용되는 고분자 소재이다. 폴리술폰 멤브레인은 소수성 특성으로 인하여 공정상에서 빠른 막오염이 일어난다. 고분자 블렌딩은 폴리술폰 멤브레인의 수명을 향상시키는데 있어 가장 간단하고 효과적인 방법이다. sPES는 폴리술폰 블렌딩 방법을 통하여 소수성을 해결할 수 있는 유용한 친수성 고분자이다. 본 연구에서는 PSF/sPES/DMF/PVP/BE 고분자 용액을 물에 침지시켜 정밀여과 멤브레인을 제조하였다. 캐스팅 용액에 소량의 sPES 첨가함으로써 정밀여과 멤브레인 구조 변화를 볼 수 있었다. sPES의 첨가는 높은 비대칭성과 활성층의 성장, 그리고 평균 기공 크기의 감소를 가져왔다. 하지만 수투과량은 PSF/sPES/DMF/PVP/BE로 만든 멤브레인이 PSF/DMF/PVP/BE로 만든 멤브레인에 비해 더 큰 값을 보였다.
정밀여과막 제조에 있어 폴리술폰 고분자 용액에 술폰산기를 가지는 폴리술폰(s-PSF)의 첨가가 분리막의 구조 및 투과 특성에 미치는 영향을 조사하였다. 정밀여과 고분자 분리막은 폴리술폰/아프로틱 용매계/폴리비닐피롤리돈/2-부톡시에탄올을 함유하는 고분자 용액을 이용하여 캐스팅 한 후 물에 침지하여 제조하였다. 캐스팅 공정은 증기유도 상전이와 용매-비용매 상전이 공정 시간을 조정하여 비대칭 구조가 발달된 정밀 여과막을 얻을 수 있었다. DMF 단일용매와 NMP/DMAc 혼합용매계 두 가지 용매 조건에 대한 제막 결과를 비교하여 살펴보았다. 비대칭성이 나타나며 유량 향상을 보인 용매는 DMF 단일용매로 s-PSF 함량 1.53wt%이었으며 14,475(L/m²hr)의 유량과 0.246㎛의 평균기공을 나타내었다.
This study was evaluated the applicability of the membrane filtration process (Micro Filtration (MF), nanofiltration membranes (NF), reverse osmosis (RO)) on the major radioactive substances, iodine (I-) and cesium (Cs+) using membranes produced in Korea and domestic raw water. Iodine (I-) or cesium (Cs+) in the microfiltration membrane (MF) process could not be expected removal efficiency by eliminating marginally at the combined state with colloidal and turbidity material. At the domestic raw water (lake water, turbidity 1.2 NTU, DOC 1.3 mg/L) conditions, nanofiltration membrane (NF) and reverse osmosis (RO) showed a high removal rate of about 88 ~ 99% for iodine (I-) and cesium (Cs+) and likely to be an alternative process for the removal of radioactive material.
상 전이 공정을 이용하여 polysulfone계 비대칭 정밀 여과막을 제조하였다. Polysulfone/N-methyl-2-pyrrolidone/ polyvinylpyrrolidone/phosphoric acid계로 이루어진 casting 용액을 사용하였으며 응고조로는 물을 사용하였다. 멤브레인 제조공정에 적용된 상 전이 공정으로 증기 유도 상 전이 공정을 적용하였으며 상대습도 74%에서 캐스팅 판의 온도와 노출 시간을 조절한 결과 기공의 크기와 구조에 있어 변화를 관찰할 수 있었다. 제조된 멤브레인의 구조는 SEM과 microflow permpor-ometer를 사용하여 조사하였다. Phosphoric acid의 첨가는 조밀한 스펀지 형태의 멤브레인을 느슨한 스펀지 형태의 멤브레인으로 변화시켰으며 촉매량의 Phosphoric acid 첨가로도 평균 기공크기는 거의 0.2 µm 정도 커지고 유량도 약 3,000 LMH가증가하였다. 캐스팅 판의 온도와 노출 시간의 변화는 표면층의 구조, 기공의 크기 및 공극률에 큰 변화를 가져옴을 확인할 수있었다.
지붕이나 여러 가지 방법과 장소에서 수집된 빗물을 처리하면 직접적 간접적으로 유익하게 사용될 수 있다. 이러한 빗물은 점점 더 높은 품질을 위해 고려되고 있고, 분리막은 이러한 빗물 처리를 위한 중요한 기술이다. 특히, 분리막은 고품질 물 생산, 높은 집적도 및 낮은 에너지 소비 등의 장점이 있다. 그럼에도 불구하고, 막오염은 수처리 및 폐수 재활용 부분과 마찬가지로 심각한 문제로 간주되고 있다. 본 연구에서는 빗물 처리에 정밀여과(MF)막을 적용하였고, 저압 자외선(LPUV)처리를 정밀여과막의 전처리로 사용하였다. 유기물에 대한 UV의 영향을 정량화하기 위해 총 유기탄소(TOC) 및 UV 흡광도(UVA)를 모두 측정하였다. 또한 UV 전처리 효과에 따른 막의 오염 정도를 조사하였다. LPUV 전처리를 하고 실험을 한 결과 조류에 의해 오염된 빗물에서 막의 오염을 제어하는데 효과적임을 알 수 있었으며, 이것은 UV 처리 후 유기물의 양이 감소하고 특성이 변화하기 때문이었다. 따라서 UV/MF 처리는 마이크로 워터 그리드 시스템과 같은 수처리를 위한 유망한 옵션이 될 수 있을 것으로 생각된다.
Chemically stable Polyvinylidene fluoride-hexa-fluoropropane (PVDF-HFP) copolymer asymmetric membranes were prepared by the conventional phase inversion process, using Dimethyacetamide (DMAc) as a solvent and water as a non-solvent. To control the pore size and porosity of the PVDF-HFP membranes, tetra-ethoxysilane (TEOS) was used as a pore-forming agent. The prepared membranes were characterized, using several analytical methods such as Fourier Transform Infrared spectroscopy (FTIR), Thermo-gravimetric analyzer (TGA), Field Emission Scanning Electronic Microscopy (FESEM). TEOS turned out to increase porosity and make homogeneous pores on the membranes. Depending on the composition of the dope solutions, the pore size was ranged from 0.1 to 1.0 mum. The flux of the PVDF-HFP membranes prepared by using TEOS as a pore forming agent was increased substantially without much decrease in the rejection. When 15 wt% PVDF-HFP solution was blended with 13 wt% TEOS solution at composition ratio of 70/30 in wt%, the water flux at 2 bars was about 2 m3/m2day.
PES/DMF/TSA/PVP 고분자용액을 물에 침지시 시키는 상전이 공정을 통하여 비대칭성이 향상된 PES 멤브레인을 제조하였다. PES (polyethersulfone) 용액에 응고제 (p-toluenesulfonic acid, TSA)와 습윤제 고분자 (polyvinylpyrrolidone, PVP)의 첨가와 습윤 상태에 노출 시간으로 일어나는 멤브레인 표면의 pre-coagulation 현상은 멤브레인의 구조적 특성과 투과량 특성에 있어 중요한 역할을 한다. PES 용액은 폴리에스터 필름에 코팅된 후 약 72~144초 동안 80%의 습도하에서 공기에 노출된 후 응고조에 침지되었다. Capillary flow porometer, FE-SEM과 수투과 평가장치를 통하여 멤브레인의 특성을 살펴보았다. TSA 20 wt%와 PVP 10 wt%가 첨가된 11 wt%의 PES 용액에서 멤브레인 구조의 비대칭성이 크게 향상되었으며 최소 기공충의 두께도 얇아짐을 볼 수 있었다. 그 결과로 수투과량에 큰 증가를 가져옴을 볼 수 있었다.
본 연구에서는 p-toluenesulfonic acid (TSA)와 polyvinylpyrrolidone (PVP)를 함유한 polyethersulfone (PES) 고분자 용액을 이용하여 PES 멤브레인 내에 최소 공경을 갖는 내부 분리층을 만드는 방법에 관한 새로운 방법을 제시하고자 한다. 팽윤제로 사용된 PVP와 응고제로 사용된 TSA를 함유한 평막형 PES 멤브레인의 제조 및 구조적인 특성 조사가 수행되었으며, 상업용 막에 대등할 만한 투과 성능과 좁은 pore size distribution을 가지는 멤브레인을 제조할 수 있음을 확인하였다. 또한 PVP의 첨가는 멤브레인의 단면구조와 투과 성능에, TSA는 투과 성능보다는 pore size distribution에 영향을 준다는 것을 확인하였으며 이는 FE-SEM 결과와 TSA를 첨가한 멤브레인의 단면 사진에서 내부 최소 기공층의 두께가 두꺼워짐을 확인할 수 있었다.
본 연구에서는 2종류의 다채널 알루미나 세라믹 정밀여과막으로 호소수를 처리할 경우, 질소 역세척 시간(BT) 및 막간압력차(TMP) 영향과 최적운전조건을 규명하였다. 정상여과시간(FT)은 8분, 유량 2.0 L/min, 역세척 압력 2.0 bar로 고정하였고, BT는 10∼60초, TMP는 0.6~2.0 bar로 변화시켰다. 또한, 최적운전조건은 막오염에 의한 저항 (Rf), 무차원한 투과선속 (J/Jo), 투과선속 (J), 총여과부피VT의 측면에서 고찰하였다. 그 결과, 0.4 μm의 평균기공 크기를 갖고 있는 HC04 분리막의 최적 역세척 조건은 BT=10초, 1.0 μm의 평균기공인 HC10 분리막에서는 20초임을 알 수 있었다. 한편, TMP가 증가할수록 구동력의 증가로 보다 많은 VT를 얻을 수 있었다. 오염물질 제거율은 탁도(Turbidity) 95.4% 이상, 화학적 산소 요구량 (CODMn) 12.7∼20.1%, 암모니아성 질소(NH3-N) 0.0∼6.4%, 총질소 (T-N) 1.9∼4.6%, 총인 (T-P) 34.9∼88.4%의 제거 율을 보였다.
본 연구에서는 분리막의 일반적 역세척 방법이 아닌 질소 역세척을 하면서, 4종의 탄소계 관형 세라믹 한오여곽막으로 제지공장의 방류수를 처리하였을 때 역세척 주기 및 막간압력차 (TMP), 유량의 영향과 최적운 전조건을 규명하였다. 역세척시간 (BT)을 40초로 고정하였고, 정상운전시간 (FT)은 4~32분, TMP는 1.0~3.0kgf/cm2 유속은 0.53~1.09cm/s로 변화시켰다. 또한 최적조건은 무차원 투과선속 (J/J0) 및 총과여부부피 (VT) 막오염에 의한 저항 (Rf)의 측면에서 고찰하였다. 그 결과 최적 역세척주기는 BT/FT=0.083 (FT=8분)으로 가장 빈번한 역세척 BT/FT=0.167 (FT=4분) 보다 오히려 많은 총여과부피를 얻을수 있었다. 한편, TMP가 증가할수록 구동력의 증가로 보다 많은 VT를 얻을 수 있었고, 유량이 증가할수록 발생한 난류의 영향으로 막오염은 감소되고 투과유속은 증가하여 많은 VT를 얻을수 있었다. 오염물질 제거율은 탁도 95% 이상, 호학적 산소요구량 (CODCr)45~83%로 높았으나 총용존고형물 (TDS)의 경우 10% 이하로 낮았다