검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Obesity is the cause of many diseases, and its severity continues to increase. Promoting non-shivering thermogenesis is attracting attention as a new treatment strategy for obesity. This study summarized the studies that evaluated the effect of Panax ginseng on promoting non-shivering thermogenesis in animal models. A total of 7 studies were included according to the selection criteria, of which five were judged to have a high risk of bias. Indicators of UCP1 mRNA, UCP1 protein, and PGC- 1a were used in the meta-analysis, and the certainty of evidence progressed for each indicator, with UCP1 protein showing the highest certainty of evidence. Meta-analysis was conducted on 5 works of literature with standard indicators. As a result of meta-analysis, UCP1 protein level and PGC-1a mRNA level were significantly increased statistically. In addition, the protein levels of PRDM16 and TFAM increased in several studies (not a meta-analysis). These findings suggest that Panax ginseng could be a potential therapeutic agent for obesity. However, further research is needed to understand its mechanisms and possible side effects fully. Thus, it is concluded that Panax ginseng in animal models can promote non-shivering thermogenesis and improve mitochondria function in animal models, opening up new avenues for research and potential clinical applications.
        4,200원
        3.
        2018.11 구독 인증기관·개인회원 무료
        Melatonin (N-aceyl-5-methoxytryptamine) is the major hormone of the pineal gland. Melatonin and its metabolic derivatives possess extensive free-radical scavenging abilities and played critical roles in antioxidative stress, resisting apoptotic cell death. Melatonin also could enhance mitochondrial biogenesis in rats with carbon tetrachloride-induced liver fibrosis. In addition, melatonin attenuates myocardial ischemia/reperfusion injury by reducing oxidative stress damage via activation of SIRT1 signaling in a melatonin receptor 2-dependent manner. Activation or overexpression of SIRT1 could enhance mitochondrial biogenesis and function by inducing PGC-1α expression and deacetylation. The aim of this study was to investigate if melatonin enhances mitochondrial biogenesis and function via activation of melatonin receptor 2/SIRT1/PGC1-α Pathway. The results showed that Melatonin rescued rotenone-induced impairment of porcine embryo development. Treatment with rotenone could increase oxidative stress and apoptosis. Rotenone impaired mitochondrial functions by disrupting mitochondrial membrane potential, reducing mitochondrial DNA copy number and ATP production. Melatonin could improve SIRT1 and PGC-1α expression, inducing mitochondrial biogenesis. Rotenone-induced mitochondrial dysfunction and ATP deficiency was rescued by melatonin treatment, the oxidative stress and apoptosis was significantly decreased. Inhibition of melatonin receptor 2 or Knockdown of SIRT1 abolished the protective effects of melatonin on rotenone-induced impairments. Therefore, melatonin enhanced mitochondrial biogenesis and function, protected against rotenone-induced impairments.
        5.
        2008.06 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to determine the potential hazardous effects of sorting process by flowcytometry on the quality of boar spermatozoa by flowcytometer. Freshly collected boar semen was diluted and divided into two groups; control none sorted and sorted. Sperms in sorted group were processed with flowcytometer for cell sorting with 100 uM nozzle under the 20 psi pressure. Measurements on each parameter were made at two time points, 0hr (right after sorting) and 24 hr post sorting. Although there was a tendency of lower viability in sorted group than none sorted control group, the percentage of live cells in control(75.83+-6.92 & 59.53+-10.34) was not significantly different from sorted (59.7+-7.34 & 43.97+-3.76) at both 0 and 24 hr post sorting. However, sorted sperm showed significantly lower mitochondrial function compared to the control at both 0 h (79.37+-3.22 vs. 63.50+-10.05) and 24hr(67.27+-3.22 vs. 46.97+-5.37) time points (p<0.007). Sperm DNA fragmentation rate was significantly lower in control (22.0+-7.04) than that of sorted (32.27+-7.49) at 24 hr time point (p<0.0002). Taken together, these data suggested thatsorting process by flowcytometer may have influenced sperm motility rather than viability. Also high speed sperm sorting by flowcytometer has significant effects on DNA fragmentation on elapsed time after sorting.
        3,000원