검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 16

        1.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Somatic cell nuclear transfer derived embryonic stem cells (NT-ESCs) have significant advantages in various fields such as genetics, embryology, stem cell science, and regenerative medicine. However, the poor establishment of NT-ESCs hinders various research. Here, we applied fasudil, a Rho-associated kinase (ROCK) inhibitor, to develop somatic cell nuclear transfer (SCNT) embryos and establish NT-ESCs. In the study, MII oocytes were isolated from female B6D2F1 mice and performed SCNT with mouse embryonic fibroblasts (MEFs). The reconstructed NT-oocytes were activated artificially, and cultured to blastocysts in KSOM supplemented with 10 μM fasudil. Further, the blastocysts were seeded on inactivated MEFs in embryonic stem cell medium supplemented with 10 μM fasudil. A total of 26% of embryos formed into blastocysts in the fasudil treated group, while this ratio was 44% in the fasudil free control group. On the other hand, 30% of blastocysts were established NT-ESCs after exposure of fasudil, which was significantly higher than the control group (10%). The results suggest that fasudil reduced blastocyst development after SCNT due to inhibition of 2 cell cleavage while improved the establishment of NT-ESCs through the anti-apoptotic pathway.
        4,000원
        2.
        2011.12 구독 인증기관 무료, 개인회원 유료
        Mitochondria diseases have been reported to involve structural and functional defects of complex I-V. Especially, many of these diseases are known to be related to dysfunction of mitochondrial proton-translocating NADH-ubiquinone oxidoreductase (complex I). The dysfunction of mitochondria complex I is associated with neurodegenerative disorders, such as Parkinson's disease, Huntington's disease, and Leber’s hereditary optic neuropathy (LHON). Mammalian mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) is largest and consists of at least 46 different subunits. In contrast, the NDI1 gene of Saccharomyces cerevisiae is a single subunit rotenone-insensitive NADH-quinone oxidoreductase that is located on the matrix side of the inner mitochondrial membrane. The Saccharomyces cerevisiae NDI1 gene using a recombinant adeno-associated virus vector (rAAV-NDI1) was successfully expressed in AML12 mouse liver hepatocytes and the NDI1-transduced cells were able to grow in media containing rotenone. In contrast, control cells that did not receive the NDI1 gene failed to survive. The expressed Ndi1 enzyme was recognized to be localized in mitochondria by confocal immunofluorescence microscopic analyses and immunoblotting. Using digitonin-permeabilized cells, it was shown that the NADH oxidase activity of the NDI1-transduced cells was not affected by rotenone which is inhibitor of complex I, but was inhibited by antimycin A. Furthermore, these results indicate that Ndi1 can be functionally expressed in the AML12 mouse liver hepatocytes. It is conceivable that the NDI1 gene is powerful tool for gene therapy of mitochondrial diseases caused by complex I deficiency. In the future, we will attempt to functionally express the NDI1 gene in mouse embryonic stem (mES) cell.
        4,000원
        10.
        1994.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        생쥐 배반포로부터 내부세포괴(inner cell mass, ICM)를 outgrowth로 분리하여 증식 시킴으로써 배아주(embryonic stem, ES)세포를 확립하고자 본 실험을 실시하였다. 과배란처리와 교미에 의해 생산된 ICR 생쥐의 3.5일 배반포를 sDMEM내의 배아성 섬유아단흥배양층에 배양하여 ICM세포의 증식을 조사한 결과, 3.5일부터 분리한 ICM세포들은 배양 7, 8일에 각각 1,500 및 3,200세포의 미분화세포로 증식하였다.
        4,000원
        11.
        2015.09 KCI 등재 서비스 종료(열람 제한)
        The suitable feeder cell layer is important for culture of embryonic stem (ES) cells. In this study, we investigated the effect of two kinds of the feeder cell, MEF cells and STO cells, layer to mouse ES (mES) cell culture for maintenance of stemness. We compare the colony formations, alkaline phosphatase (AP) activities, expression of pluripotency marker genes and proteins of D3 cell colonies cultured on MEF feeder cell layer (D3/MEF) or STO cell layers (D3/STO) compared to feeder free condition (D3/–) as a control group. Although there were no differences to colony formations and AP activities, interestingly, the transcripts level of pluripotency marker genes, Pou5f1 and Nanog were highly expressed in D3/MEF (79 and 93) than D3/STO (61and 77) or D3/– (65 and 81). Also, pluripotency marker proteins, NANOG and SOX-2, were more synthesized in D3/MEF (72.8±7.69 and 81.2±3.56) than D3/STO (32.0±4.30 and 56.0±4.90) or D3/– (55.0±4.64 and 62.0±6.20). These results suggest that MEF feeder cell layer is more suitable to mES cell culture. Key words : Mouse embryonic stem cell, Feeder cell, Pluripotency marker, MEF feeder cell
        12.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        Embryonic stem (ES) cells can self-renew and differentiate to various cells depending on the culture condition. Although ES cells are a good model for cell type specification and can be useful for application in clinics in the future, studies on ES cells have many experimental restraints including low transfection efficiency and transgene expression. Here, we observed that transgene expression after transfection was enhanced by treatment with histone deacetylse (HDAC) inhibitors such as trichostatin A, sodium butyrate, and valproic acid. Transfection was performed using conventional transfection reagents with a retroviral vector encoding GFP under the control of CMV promoter as a reporter. Treatment of ES cells with HDAC inhibitors after transfection increased population of GFP positive cells up to 180% compared with untreated control. ES cells showed normal expression of stem cell markers after treatment with HDAC inhibitors. Transgene expression was further enhanced by modifying transfection procedure. GFP positive cells selected after transfection were proved to have the stem cell properties. Our improved protocol for enhanced gene delivery and expression in mouse ES cells without hampering ES cell properties will be useful for study and application of ES cells.
        14.
        2012.12 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to investigate the effects of Woohwangcheungsimweun (ox bezoar), deer antlers, and wild ginseng on induction of cardiomyocyte differentiation using the established mouse embryonic stem (ES) cells. The expression of atrial natriuretic peptide (ANP) was highest in Woohwangcheungsimweun treatment group. The expression of rabbit anti-GATA-4(GATA-4) and troponin (TnI) were highest in wild ginseng and Woohwangcheungsimweun treatment groups, respectively. Fluorescence activated cell sorting (FACS) analysis showed that the expression of ANP was highest in Dimethyl sulfoxide(DMSO) and Woohwangcheungsimweun treatment groups. The expression of GATA-4 was relatively high in wild ginseng treatment group. The expression of TnI was highest in Woohwangcheungsimweun treatment group. In the gene expression analysis, DMSO greatly inhibited GATA-4 expression to 25% of control. Woohwangcheungsimweun treatment caused to increase cTnI and cardiac ANP expression significantly. Wild ginseng extract upregulated GATA-4 gene expression. In conclusion, DMSO widely used as cardiomyocyte differentiation inducer did not show significant effects on the expression of ANP, GATA-4 and TnI in this study. Woohwangcheungsimweun showed upregulation of ANP and TnI expression. Wild ginseng extract showed greater effects than DMSO on GATA-4 expression. These results might suggest that the combination of Woohwangcheungsimweun and wild ginseng extract treatment can be expected to increase expressions of all three genes.
        15.
        2007.06 KCI 등재 서비스 종료(열람 제한)
        배아줄기세포는 외부 기인 특정 요소를 이용한 세포 조절물질 활성을 통하여 원하는 세포형태로 분화될 수 있다. 배아줄기세포의 이용성세포침투성단백질(CPP)은 몇 개의 아미노산으로 구성된 작은 펩타이드로 유용한 물질 수송계 중의 하나로 인식되고 있다. 본 연구에서는 몇 종류의 CPP를 이용하여 특정 단백질을 생쥐배아줄기세포(R1)내로 트렌스펙션하는데 있어 그 정도를 결정할 수 있는 요소들의 영향을 분석하였다. CPP인 Buforin II, pEP-1을 강도