검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 46

        1.
        2023.11 구독 인증기관·개인회원 무료
        Detectors utilized for nuclear material safeguards have been using scintillation detectors which are inexpensive and highly portable, and electrically cooled germanium detectors which are expensive but have excellent energy resolution. However, recently IAEA, the only international inspectorate of nuclear material safeguards for the globe, have replaced the existing scintillation detector and electrically cooled germanium detector with a CdZnTe detector owing to the improved performance of room-temperature semiconductors significantly. In this paper, we will examine the spectrum features of the CdZnTe detector such as spectrum shape, energy resolution, and efficiency in the energy region of interest, which are the important characteristics for measuring Uranium enrichment. For this purpose, it would be conducted to compare its spectrum features using CdZnTe, NaI, HPGe detectors. The main energies of interest include 185.7 keV and 1,001 keV, which are the decay energies of uranium 235 and uranium 238. The results of this study will provide a better understanding of the spectral features of various detectors used in uranium enrichment analysis, and are expected to be used as basic data for future related software development.
        2.
        2023.11 구독 인증기관·개인회원 무료
        The development of advanced nuclear facilities is progressing rapidly around the world. Newly designed facilities have differences in structure and operation from existing nuclear facilities, so Safeguards by Design (SBD), which applies safeguards at the design stage, is important. To this end, designers should consider the safeguardability of nuclear facilities when designing the system. Safeguardability represents a measure of the ease of safeguards, and representative evaluation methodologies are Facility Safeguardability Analysis (FSA) and Safeguardability Check-List (SCL). Those two have limitations in the quantification of safeguardability. Accordingly, in this study, the Safeguardability Evaluation Method (SEM), which has clear evaluation criteria based on engineering formulas, was developed. Nuclear Material Accountancy (NMA), a key element of Safeguards, requires the Material Balance Area (MBA) of the target facility and performs Material Balance Evaluation (MBE) based on the quantitative evaluation of nuclear materials entering or leaving the MBA. In this study, about 10 factors related to NMA were developed, including MBA, Key Measurement Point (KMP), Uncertainty of a detector, Radiation signatures, and MUF (Material Unaccounted For). For example, one of the factors, MUF is used in MBA to determine diversion through analysis of unquantified nuclear materials and refers to the difference between Book Inventory and Physical Inventory, as well as errors occurring during the process in bulk facilities, errors in measurement, or intentional use of nuclear materials. This occurs in situations such as attempted diversion, and accurate MUF evaluation is essential for solid Safeguards implementation. MUF can be evaluated using the following formula (MUF=(PB+X-Y)-PE). The IAEA’s Safeguards achievement conditions (MUF < SQ) should be met. Considering this, MUF-related factors were developed as follows. (􀜵􀜧􀜯 = 1 − 􀯆􀯎􀮿 􀯌􀯊 ) In this way, about 10 factors were developed and described in the text. This factors is expected to serve as an important factor in evaluating the safeguardability of NMA, and in the future, safeguardability factors related to Containment & Surveillance (C&S) and Design Information Verification (DIV) will be additionally developed to conduct a comprehensive safeguardability evaluation of the target facility. This methodology can significantly enhance safeguardability during the design stage of nuclear facilities.
        3.
        2023.11 구독 인증기관·개인회원 무료
        As the demand for nuclear power increases as a means to achieve carbon neutrality, concerns about nuclear proliferation have also grown. Consequently, significant researches have conducted to enhance nuclear non-proliferation resistance. Among these research, nuclear material attractiveness is a methodology used to evaluate how appealing a particular material is for potential use in nuclear weapons, based on the characteristics of that material. Existing nuclear material attractiveness assessments focused on materials like U, Pu, and TRU, which could be directly used in the production of nuclear weapons. However, these assessments did not consider how the properties of nuclear materials change throughout the nuclear fuel cycle, with each facility process. This study assumed a scenario of the nuclear fuel cycle of graphite reduction reactors and analyzed including enrichment facilities and PUREX. This study used the FOM (Figure-Of-Merit) method developed by LANL (Los Alamos National Laboratory) for evaluating the nuclear material attractiveness. The FOM formula consists of three parameters such as critical mass, heat content, and dose The critical mass of targe materials and the dose evaluation were conducted using the Monte Carlo N-Particle code. The heat content was calculated using the ORIGEN code embedded in the Scale code. In particular, if U-238 is dominant in the facility’s materials, such as mining and refining facilities, and critical mass evaluation is unpractical. Therefore, 1SQ (Significant Quantity) of that uranium was assumed as the critical mass value for the FOM evaluation, even though 1SQ is not identical to the critical mass As a result of this study, the attractiveness of Pu produced by PUREX among all nuclear fuel cycle facilities was 2.7616, which was the most attractive to be diverted to nuclear weapons. Through this study, it was shown that the proliferation risk of the nuclear facilities in the nuclear fuel cycle and risk of diversion among those facilities.
        4.
        2023.11 구독 인증기관·개인회원 무료
        Among the public notices of the NSSC, five notices related to safeguards, including “Education of Nuclear Control, International Regulatory Materials, Preparation of Regulation of NMAC (Nuclear Material Accounting and Control), the National Inspection of NMAC, and Reporting of International Regulatory Materials” The regulations on the National Inspection of NMAC have remained the same since some revisions were made on December 26, 2017, raising the need to revise the public notice due to changes in the domestic and international safeguards regulatory environment. Accordingly, this paper analyzes the public notice of the National Inspection of NMAC and proposes the revision direction. The regulation regarding the National Inspection of NMAC comprises sections such as Purpose and Definition, Types - Scope - Frequency of the National Inspection, Notification of the National Inspection’s plan, and Management of Violation. Appendices include the contents of the violation table, explanations regarding types of violations, and various forms related to the National Inspection, which are attached separately. IAEA mentioned that ROK was selected as a pilot country for the Improved SLA (State-Level Approach) project starting in November 2020. IAEA explained that a quantitative and standardized methodology was adopted and developed for this purpose. As a result, the Unannounced Inspection at LWR facilities will transition to the Random Interim Inspection. Additionally, the Physical Inventory Verification in CANDU facilities will increase to once a year per reactor. This status will change the frequency and intensity of inspection at domestic nuclear facilities. Furthermore, domestically, there is an ongoing trend of continuous growth and diversification of nuclear facilities. In light of the changing domestic and international safeguards environment, it is necessary to set a direction for revising the regulation regarding the National Inspection of NMAC that was partially amended in 2017 to align with the current status. Firstly, due to the increased burden on operators resulting from the increased number of IAEA inspections following the application of Improved SLA, there is a need to streamline the National Inspection of NMAC frequency to enhance overall regulatory efficiency. Furthermore, the definition section should also be revised to include matters related to the regulation to reflect the current reality accurately. Considering the operation and name changes of new domestic nuclear facilities, there may be a need to add or modify computer input codes. While pursuing the revision of regulations regarding the National Inspection of NMAC, an analysis of the need for revision of other regulations related to safeguards should also be conducted, and directions should be set. Through this process, improving the regulatory framework that forms the basis of safeguards can help prevent confusion among operators and promote regulatory efficiency. We can better cope with these changes by proactively adapting to the rapidly changing domestic and international nuclear environment.
        5.
        2023.11 구독 인증기관·개인회원 무료
        Nuclear Material Accountancy (NMA) system quantitatively evaluates whether nuclear material is diverted or not. Material balance is evaluated based on nuclear material measurements based on this system and these processes are based on statistical techniques. Therefore, it is possible to evaluate the performance based on modeling and simulation technique from the development stage. In the performance evaluation, several diversion scenarios are established, nuclear material diversion is attempted in a virtual simulation environment according to these scenarios, and the detection probability is evaluated. Therefore, one of the important things is to derive vulnerable diversion scenario in advance. However, in actual facilities, it is not easy to manually derive weak scenario because there are numerous factors that affect detection performance. In this study, reinforcement learning has been applied to automatically derive vulnerable diversion scenarios from virtual NMA system. Reinforcement learning trains agents to take optimal actions in a virtual environment, and based on this, it is possible to develop an agent that attempt to divert nuclear materials according to optimal weak scenario in the NMA system. A somewhat simple NMA system model has been considered to confirm the applicability of reinforcement learning in this study. The simple model performs 10 consecutive material balance evaluations per year and has the characteristic of increasing MUF uncertainty according to balance period. The expected vulnerable diversion scenario is a case where the amount of diverted nuclear material increases in proportion to the size of the MUF uncertainty, and total amount of diverted nuclear material was assumed to be 8 kg, which corresponds to one significant quantity of plutonium. Virtual NMA system model (environment) and a divertor (agent) attempting to divert nuclear material were modeled to apply reinforcement learning. The agent is designed to receive a negative reward if an action attempting to divert is detected by the NMA system. Reinforcement learning automatically trains the agent to receive the maximum reward, and through this, the weakest diversion scenario can be derived. As a result of the study, it was confirmed that the agent was trained to attempt to divert nuclear material in a direction with a low detection probability in this system model. Through these results, it is found that it was possible to sufficiently derive weak scenarios based on reinforcement learning. This technique considered in this study can suggest methods to derive and supplement weak diversion scenarios in NMA system in advance. However, in order to apply this technology smoothly, there are still issues to be solved, and further research will be needed in the future.
        6.
        2023.05 구독 인증기관·개인회원 무료
        The Korea Institute of Nuclear Nonproliferation and Control (KINAC) is developing a simulation model to estimate nuclear material production. This model is a foundational technology in interpretation and evaluation in preparation for denuclearization verification. Through this model, it is possible to estimate the amount of nuclear material that can be produced based on information on the activities of facilities related to the nuclear fuel cycle in the actual denuclearization verification stage. This model makes it possible to determine whether the declared amount of nuclear material is reliable. In addition, the reliability of the reported information can be confirmed through on-site inspection. However, there is a possibility that proliferation-related activities cannot be detected even through this inspection, and a normal state may be misdiagnosed as carrying out nuclear proliferation-related activities. Therefore, it is unreasonable to specify activities related to nuclear proliferation with only one inspection. Since each inspection method has its diagnosis rate and false diagnosis rate, measures such as repeating the same inspection method or combining different inspection methods are required to detect activities related to nuclear proliferation reliably. Therefore, a model capable of estimating the number of repetitions to obtain a reliable nuclear activity detection probability was developed by using each inspection method’s diagnosis rate and false diagnosis rate as input information through a Bayesian inference method. Through this model, it can be concluded that repetitive inspections increase the probability of detecting nuclear proliferation-related activities. This approach confirmed the possibility of repeatedly breaking away from the high-intensity inspection method that causes political and diplomatic resistance from the target country and substituting it with a more readily acceptable, low-intensity inspection method.
        7.
        2023.05 구독 인증기관·개인회원 무료
        Under the Foreign Trade Act, an export license from the Nuclear Safety Commission is required to export items specified in Part 10 of Schedule 2 of the Public Notice of Exportation and Importation of Strategic Items (Trigger List Items). In the case of nuclear materials, deuterium, and heavy water, its cumulative amount determines whether it is trigger list item. An export license is required only if the cumulative amount exported to a single end-user country from January 1st to December 31st exceeds the regulation criteria. The reason for this cumulative control is to exclude small amounts of materials from the scope of control as they are considered less important in view of nuclear proliferation, but to prevent the possibility of acquiring large quantities of materials by importing small amounts several times. As a result, export control of nuclear material, deuterium, and heavy water requires different considerations than other Trigger List Items. First, materials exported by different companies must be consolidated to manage the cumulative amount. Second, it is necessary to continuously follow up the actual export status. If the material is not exported after it was classified as ‘non-Trigger List Items’, it should not be included in the cumulative amount. Third, there may be a difference between the accumulated quantities aggregated at the time of the classification and the time of the actual export. The classification should be changed if an export of the classified material is postponed or another export of same materials occurs before the export of the classified material. Fourth, the classification result of these materials should not be reused. Generally, the classification result could be reused within the expiration date (2 years) but in the case of substances. However, the reuse of classification result for materials should be limited as the classification results could be change depending on the cumulative amount. In addition, the sharing of classification results between different entities should also be restricted. The government approval procedures are required even for export of small amounts of nuclear materials which are less than the regulation criteria. The cumulative quantities of nuclear materials are systematically managed in the Nuclear Export & imPort control System (NEPS) through these procedures. NEPS is also linked to the custom clearance system of Korea Customs Service, which enables to track actual exports and the time of exports. However, cumulative quantities for the heavy water and deuterium are managed individually by classification reviewers. The annual export plans are received in advance from major entities which deal with the materials for nuclear uses, and the cumulative quantities for each application are managed manually. The systematic management has not been required as there were a few cases of exporting small quantities. However, systematic management may be required in the future as overseas expansion attempts from various companies in the nuclear field has been increasing. In addition, further study is needed on the criteria and system for calculating the cumulative amount. The time of aggregate the cumulative amount should be clarified by considering the difference between the time of classification and actual export. It is required to devise an efficient way to follow up the actual export.
        8.
        2023.05 구독 인증기관·개인회원 무료
        A person who performs or plans to conduct a physical protection inspection as stipulated by the law, the act on physical protection and radiological emergency, should obtain an inspector’s ID card certified and authorized by Nuclear Safety and Security Commission Order No.137 (referred to as Order 137). In addition, according to Order 137, KINAC has been operating some training courses for those with the inspector’s ID card or intending to acquire it. Also, strenuous efforts have been put to incrementally elevate their inspection related expertise. Since Republic of Korea has to import uranium enriched less than 20% in order to manufacture fuels of nuclear reactors in domestic and abroad, the physical protection for categorization III nuclear material in transit is significantly important along with an increase in transport. The expertise of inspectors should be constantly needed to strengthen as the increase in transport leads to an increase in inspection of nuclear material in transit. We have suggested a special way to improve the inspector’s capacities through Virtual Reality technology (VR). A 3-Dimensional virtual space was designed and developed using a 3-axis simulator and VR equipment for practical training. HP’s Reverb G2 product, which was developed in collaboration with VALVE Corporation and MicroSoft, was used as VR equipment, and the 3-axis motion simulator was developed by M-line STUDIO corp. in Korea for the purpose of realizing virtual reality. The training scenarios of transport inspection consist of three parts: preparation at the shipping point, transport in route including stops and handover at the receiving point. At the departure point, scenario of the transport preparation is composed with the contents of checking the transport-related documents which should be carried by shipper and/or carrier during transport and confirming who the shipper and/or carrier is. Second, scenario is designed for inspector to experience how carrier and/or shipper protect the nuclear material during transport or stops for rests or contingency and how they communicate with each other during transport. Lastly, scenario is developed focusing on key check items during handover of responsibilities to the facility operator at the destination. Those training scenarios can be adopted to strengthen the capabilities of those with inspector’s ID card of physical protection in accordance with Order 137 and to help new inspectors acquire inspectionrelated expertise. In addition, they can be used for domestic education to promote understanding of nuclear security, or may be used for education for people overseas for the purpose of export of nuclear facilities.
        9.
        2023.05 구독 인증기관·개인회원 무료
        Nuclear fusion energy is considered as a future energy source due to its higher power density and no emission of greenhouse gas. Therefore, various researches on nuclear fusion is being conducted. One of the key materials for the nuclear fusion research is tritium because the D-T reaction is the main reaction in the nuclear fusion system. However, that tritium can also be used for non-peaceful purposes such as hydrogen bombs. Therefore, it is necessary to establish the safeguards system for tritium. In that regards, this study analyzed the possibility of applying safeguards to tritium. To achieve this objective, the tritium production capacity through the light water reactor was analyzed. Tritium Production Burnable Absorber Rod (TPBAR) was modeled through the MCNP code, and tritium production was analyzed. The TPBAR is composed of a cylindrical tube with a double coating of aluminum and zirconium, filled with a sintered lithium aluminate (LiAlO2) pellet to prevent the release of tritium. Tritium is produced by the reaction of Li-6 in the TPBAR with neutrons, and it is extracted and stored at the Tritium Extraction Facility (TEF). As a result, the tritium production increased as the burnup and Li-6 mass increased. In addition, when the tritium produced in this way was transferred to TEF and extracted through the process, the application of safeguards measures was analyzed. To this end, various safeguards measures were devised, such as setting an Material Balance Area (MBA) for TEF and analyzing Material Balance Period (MBP). As there is no designated Significant Quantity (SQ) for tritium, cases were classified based on the type and form of nuclear weapons to estimate the Sigma MUF (Material Unaccounted For) of the TEF. Finally, the comprehensive application of safeguards to tritium was discussed. This research is expected to contribute to the establishment of IAEA safeguards standards related to tritium by applying the findings to actual facilities.
        10.
        2022.10 구독 인증기관·개인회원 무료
        The nuclide management technology for separating high-heat generating/high-mobility/long-lived nuclides from high-level wastes based on the chemical reactions is under development. In order to secure the reliability of nuclear non-proliferation and to implement the effective safeguards, it is necessary to consider the safeguards from the conceptual design phase of the novel technologies. However, there was no experience and research on safeguards for the chemical reaction based nuclide management technology. In order to development the available monitoring techniques for the safeguards of nuclide management technology, the possible diversion scenarios were developed and the material flows of major nuclear materials were analyzed according to the various diversion strategies for each unit process in this study. The diversion strategies in this study is limited to the diversion of nuclear materials according to the change of operational parameters (temperature, chemical reagents, pressures, etc). The nuclear material distribution behaviors under the abnormal conditions were analyzed and compared with normal conditions using the HSC Chemistry. The results will be used to determine the proper signals and feasible techniques to monitor the abnormal operations.
        11.
        2022.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The parent and daughter nuclides in a radioactive decay chain arrive at secular equilibrium once they have a large half-life difference. The characteristics of this equilibrium state can be used to estimate the production time of nuclear materials. In this study, a mathematical model and algorithm that can be applied to radio-chronometry using the radioactive equilibrium relationship were investigated, reviewed, and implemented. A Bateman equation that can analyze the decay of radioactive materials over time was used for the mathematical model. To obtain a differential-based solution of the Bateman equation, an algebraic numerical solution approach and two different matrix exponential functions (Moral and Levy) were implemented. The obtained result was compared with those of commonly used algorithms, such as the Chebyshev rational approximation method and WISE Uranium. The experimental analysis confirmed the similarity of the results. However, the Moral method led to an increasing calculation uncertainty once there was a branching decay, so this aspect must be improved. The time period corresponding to the production of nuclear materials or nuclear activity can be estimated using the proposed algorithm when uranium or its daughter nuclides are included in the target materials for nuclear forensics.
        4,500원
        12.
        2022.05 구독 인증기관·개인회원 무료
        As Kori-1 permanently shut down in Korea, it is expected that a large amount of radioactive waste will be generated during decommissioning of nuclear power plants. Radioactive concrete waste is contaminated up to depth of 100 mm with radionuclides such as 137Cs and 60Co. The radioactive waste should be accurately classified to reduce the cost of disposing of radioactive waste. Therefore, the specific radioactivity of waste must be precisely evaluated by gamma-ray measurements emitted from the radionuclides. In general, the effectiveness of the radioactivity measurement and process is confirmed using certified reference material (CRM) composed of water or agar. However, the decommissioning waste differs from this CRM in apparent density and chemical elements, so the specific radioactivity is underestimated or overestimated. Therefore, reference material composed of the same apparent density and chemical elements as the sample is required to improve the quality of radioactivity measurement. The purpose of this study is to develop a concrete reference material for the nuclear decommissioning waste. The concrete reference material composed of SiO2, CaO, and Al2O3 were manufactured in compliance with ISO Guide 35. 10 bottles were randomly selected for homogeneity test, and 2 samples for analysis were taken from each bottle. The specific radioactivity was measured using an HPGe detector with an efficiency of 30%. The results of the homogeneity test of 137Cs and 60Co satisfied the requirements of ISO Guide 35. Coincidence summing and selfabsorption effects were corrected using the Monte Carlo efficiency transfer code and Monte Carlo NParticle transport code. The reference values of 137Cs and 60Co in the concrete reference material were evaluated in the range of 1,000–1,100 Bq·kg−1 and extended uncertainty was around 7%.
        13.
        2022.05 구독 인증기관·개인회원 무료
        In accordance with the Enforcement Decree of the Act on Physical Protection and Radiological Emergency, operators of Nuclear Power Plants (NPP)s must conduct full cyber security exercise once a year and partial exercise at least once every half year. Nuclear operators need to conduct exercise on systems with high attack attractiveness in order to respond to the unauthorized removal of nuclear or other radioactive material and sabotage of nuclear facilities. Nuclear facilities identify digital assets that perform SSEP (Safety, Security, and Emergency Preparedness) functions as CDA (Critical Digital Assets), and nuclear operators select exercise target systems from the CDA list and perform the exercise. However, digital assets that have an indirect impact (providing access, support, and protection) from cyber attacks are also identified as CDAs, and these CDAs are relatively less attractive to attack. Therefore, guidelines are needed to select the exercise target system in the case of unauthorized removal of nuclear or other radioactive material and sabotage response exercise. In the case of unauthorized removal of nuclear or other radioactive material, these situations cannot occur with cyber attacks and external factors such as terrorists must be taken into consideration. Therefore, it is necessary to identify the list of CDAs that terrorists can use for cyber attacks among CDAs located in the path of stealing and transporting nuclear material and conduct intensive exercise on these CDAs. A typical example is a security system that can delay detection when terrorists attack facilities. In the case of sabotage exercise, a safety-related system that causes an initiating event by a cyber attack or failure to mitigate an accident in a DBA (Design Basis Accident) situation should be selected as an exercise target. It is difficult for sabotage to occur through a single cyber attack because a nuclear facility has several safety concepts such as redundancy, diversity. Therefore, it can be considered to select an exercise target system under the premise of not only a cyber attack but also a physical attack. In the case of NPPs, it is assumed that LOOP (Loss of Offsite Power) has occurred, and CDA relationships to accident mitigation can be selected as an exercise target. Through exercise on the CDA, which is more associated with unauthorized removal of nuclear or other radioactive material and sabotage of nuclear facilities, it is expected to review the continuity plan and check systematic response capabilities in emergencies caused by cyber attacks.
        1 2 3