검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,564

        41.
        2023.11 구독 인증기관·개인회원 무료
        To effectively assess the inventory of radionuclides generated from nuclear power plants using a consistent evaluation method across diverse groups, it is imperative to analyze the similarity in radioactive distribution between these groups. Various methodologies exist for evaluating this similarity, and the application of statistical approaches allows us to establish similarity at a specific confidence level while accounting for the dataset size (degrees of freedom). Initially, if the variance characteristics of the two groups are similar, a t-test for equal variances can be employed. However, if the variance characteristics differ, methods for unequal variances should be applied. This study delineates the approach for assessing the similarity in radioactive distribution based on the analytical characteristics of the two groups. Furthermore, it delves into the results obtained through two case studies to offer insights into the assessment process.
        42.
        2023.11 구독 인증기관·개인회원 무료
        Domestic nuclear power plants can affect the environment if multiple devices are operated on one site and even a trace amount of pollutants that may affect the environment after power generation are simultaneously discharged. Therefore, not only radioactive substances but also ionic substances such as boron should be discharged as minimally as possible. We adopted pilot CDI and SD-ELIX sytem to separating and concenrating of boron containing nulcear power plant discharge water. The boron concentration of the initial inflow water tended to decrease over time. The water quality of concentrated water also reached its peak until the initial 60 minutes, but tended to decrease in line with the decrease in the inflow water concentration. The boron removal rate was in the range of 85 to 99% with respect to the initial boron concentration of 15 to 25 mg/L. On the other hand, performance degradation due to the use of electrochemical modules is also observed, and regeneration through low ion-containing water cleaning effective. We shortened processing time by considering the optimal flow rate conditions and conductivity conditions and converting electrochemical modules into series or parallel.
        43.
        2023.11 구독 인증기관·개인회원 무료
        We conducted safety assessments for the disposal of spent resin mixed waste after the removal of beta radionuclides (3H, 14C) in a landfill facility. The spent resin tank of Wolsong nuclear power plant is generated by 8:1:1 weight ratio of spent ion exchange resin, spent activated carbon and zeolite. Waste in the spent resin tank was classified as intermediate-level radioactive waste due to 14C. Other nuclides such as 60Co and 137Cs exhibit below the low-level radioactive waste criteria. The techniques for separating mixed waste and capturing 14C have been under development, with a particular focus on microwave-based methods to remove beta radionuclides (3H, 14C) from spent activated carbon and spent resin within the mixed waste. The spent resin and activated carbon within the waste mixture exhibits microwave reactivity, heated when exposed to microwaves. This technology serves as a means to remove beta isotopes within the spent resin, particularly by eliminating 14C, allowing it to meet the low-level radioactive waste criteria. Using this method, the waste mixture can meet disposal requirements through free water and 3H removal. These assessments considered the human intrusion scenarios and were carried out using the RESRAD-ONSITE code. The institutional management period after facility closure is set at 300 years, during which accidental exposures resulting from human intrusion into the disposal site are accounted for. The assessment of radiation exposure to intruders in a landfill facility included six human intrusion scenarios, such as the drilling scenario, road construction scenario, post-drilling scenario, and post-construction scenario. Among the six human intrusion scenarios considered, the most conservative assessment about annual radiation exposure was the post-drilling scenario. In this scenario, human intrusion occurs, followed by drilling and residence on the site after the institutional management period. We assumed that some of the vegetables and fruits grown in the area may originate from contaminated regions. Importantly, we confirmed that radiation doses resulting from post-institutional management period human intrusion scenarios remain below 0.1 mSv/y, thus complying with the annual dose limits for the public. This research underscores the importance of effectively managing and securing radioactive waste, with a specific focus on the safety of beta radionuclide-removed waste during long-term disposal, even in the face of potential human intrusion scenarios beyond the institutional management period.
        44.
        2023.11 구독 인증기관·개인회원 무료
        The operation time of a disposal repository is generally more than one hundred years except for the institutional control phase. The structural integrity of a repository can be regarded as one of the most important research issues from the perspective of a long-term performance assessment, which is closely related to the public acceptance with regard to the nuclear safety. The objective of this study is to suggest the methodology for quantitative evaluation of structural integrity in a nuclear waste repository based on the adaptive artificial intelligence (AI), fractal theory, and acoustic emission (AE) monitoring. Here, adaptive AI means that the advanced AI model trained additionally based on the expert’s decision, engineering & field scale tests, numerical studies etc. in addition to the lab. test. In the process of a methodology development, AE source location, wave attenuation, the maximum AE energy and crack type classification were subsequently studied from the various lab. tests and Mazars damage model. The developed methodology for structural integrity was also applied to engineering scale concrete block (1.3 m × 1.3 m × 1.3 m) by artificial crack generation using a plate jacking method (up to 30 MPa) in KURT (KAERI Underground Research Tunnel). The concrete recipe used in engineering scale test was same as that of Gyeongju low & intermediate level waste repository. From this study, the reliability for AE crack source location, crack type classification, and damage assessment increased and all the processes for the technology development were verified from the Korea Testing Laboratory (KTL) in 2022.
        45.
        2023.11 구독 인증기관·개인회원 무료
        The increasing accumulation of spent nuclear fuel has raised interest in High-Level Waste (HLW) repositories. For example, Sweden is under construction of the KBS-3 repository. To ensure the safety of such HLW repository, various countries have been developing assessment models. In the Republic of Korea, the Korea Atomic Energy Research Institute has been developing on the AKRS model. However, traditional safety assessment models have not considered the fracture growth in the far-field host rock as a function of time. As repository safety assessments guarantee safety for million years, sustained stress naturally leads to the progressive growth of fractures as time goes on. Therefore, it becomes essential to account for fracture growth in the surrounding host rock. To address this, our study proposes a new coupling scheme between the Fracture growth model and the radionuclide transport model. That coupling scheme consists of the Cubic Law model as a fracture growth function and the GoldSim code which is a commercial software for radionuclide transport calculations. The model that adopting such fracture growth functions showed an increase of up to 15% in the release of radionuclide compared to traditional assessment models. our observations indicated that crack growth as a function of time led to an increase in hydraulic conductivity that allowed more radionuclide transport. Notably, these findings show the significance of adopting fracture growth models as a critical element in evaluating the safety of nuclear waste repositories.
        46.
        2023.11 구독 인증기관·개인회원 무료
        The seven-year research project entitled “Development of workflow for integrated 3D geological site descriptive modeling” is being carried out from 2023. This research is funded by Ministry of Trade, Industry, and Energy (MOTIE). Progress of the research is discussed here. The integrated 3D geological SDM (site descriptive model; GSDM hereafter) consists of three part; 1) three dimensional representation of geologic elements, 2) database for material properties and modeling results from SDMs of other disciplines (e.g., rock mechanics), and 3) a visualization tool for geology, material properties and modeling results. The GSDM is comparable to the GDSMs of SKB and POSIVA in its representation of geology by volume of geologic elements. However, our GSDM is different in that extra information of material properties and an extra tool for visualization is included in the GDSM. The rationale for incorporating material properties and a visualization tool into the GSDM is to expedite the development of the GSDM and SDMs of other disciplines by allowing single institution to integrate database and visualization with the GSDM. SKUA-GOCAD is used for representation of geologic surfaces for ductile and brittle shear zones, and also for surfaces for delineation of volumes of rock units. We have adopted SKUAGOCAD because the program offers powerful functions of interpolation including borehole data and geophysical prospecting. So far, we have tested the program for five different geologies, including sedimentary, high-grade metamorphic, and intrusive igneous geology. The test results are promising. Incorporation of data and modeling results for the SDMs of other disciplines is at conceptual stage. The working conceptual model involves the following steps, 1) to provide the modeler of other disciplines with surface information representing geologic elements, 2) the modeler returns not only material properties but the results of numerical analysis, and 3) incorporation of material properties and modeling results into database. Since the numerical codes in other disciplines adopt different types of formats for 3D geology, we plan to adopt the widely used FEM format prepared by Gmsh. The visualization tool will also adopt Gmsh for graphical representation of 3D geology as well as database for material properties and modeling results. When the working model of GSDM becomes available, rapid and significant progress is expected in the SDMs of other disciplines and related areas, for example, geotechnical investigation for deep geological repository.
        47.
        2023.11 구독 인증기관·개인회원 무료
        Even though a huge amount of spent nuclear fuels are accumulated at each nuclear power plant site in Korea, our government has not yet started to select a final disposal site, which might require more than several km2 surface area. According to the second national plan for the management of high-level radioactive waste, the reference geological disposal concept followed the Finnish concept based on KBS-3 type. However, the second national plan also mentioned that it was necessary to develop the technical alternatives. Considering the limited area of the Korean peninsula, the authors had developed an alternative disposal concepts for spent nuclear fuels in order to enhance the disposal density since 2021. Among ten disposal concepts shown in the literature published in 2000’s, we narrowed them to four concepts by international experiences and expert judgements. Assuming 10,000 t of CANDU spent nuclear fuels (SNF), we designed the engineered barriers for each alternative disposal concept. That is, using a KURT geological conditions, the engineered barrier systems (EBS) for the following four alternative concepts were proposed: ① mined deep borehole matrix, ② sub-seabed disposal, ③ deep borehole disposal, and ④ multi-level dispoal. The quantitative data of each design such as foot prints, safety factors, economical factors are produced from the conceptual designs of the engineered barriers. Five evaluation criteria (public acceptance, safety, cost, technology readiness level, environmental friendliness) were chosen for the comparison of alternatives, and supporting indicators that can be evaluated quantitatively were derived. The AHP with domestic experts was applied to the comparison of alternatives. The twolevel disposal was proposed as the most appropriate alternative for the enhancement of disposal efficiency by the experts. If perspectives changes, the other alternatives would be preferred. Three kinds of the two-level disposal of CANDU SNF were compared. It was decided to dispose of all the CANDU spent nuclear fuels into the disposal holes in the lower-level disposal tunnels because total footprint of the disposal system for CANDU SNF was much smaller than that for PWR SNF. Currently, we reviewed the performance criteria related to the disposal canister and the buffer and designed the EBS for CANDU SNF. With the design, safety assessment and cost estimates for the alternative disposal system will be carried out next year.
        48.
        2023.11 구독 인증기관·개인회원 무료
        Spent nuclear fuel management is a high-priority issue in South Korea, and addressing it is crucial for the country’s long-term energy sustainability. The KORAD (Korea Radioactive Waste Agency) is leading a comprehensive, long-term project to develop a safe and effective deep geological repository for spent nuclear fuel disposal. Within this framework, we have three primary objectives in this work. First, we conducted statistical analysis to assess the inventory of spent nuclear fuel in South Korea as of 2021. We also projected future generation rates of spent nuclear fuels to identify what we refer to as reference spent nuclear fuels. These reference spent nuclear fuels will be used as the design basis spent fuels for evaluating the safety of the repository. Specifically, we identified four types of design basis reference spent nuclear fuels: high and low burnup from PLUS7 (with a 16×16 array) and ACE7 (with a 17×17 array) assemblies. Second, we analyzed radioactive nuclides’ inventory, activities, and decay heats, extending up to a million years after reactor discharge for these reference spent nuclear fuels. This analysis was performed using SCALE/TRITON to generate the burnup libraries and SCALE/ORIGEN for source term evaluation. Third, to assess the safety resulted from potential radioactive nuclides’ release from the disposal canister in future work, we selected safety-related radionuclides based on the ALI (Annual Limit of Intake) specified in Annex 3 of the 2019-10 notification by the NSSC (Nuclear Safety and Security Commission). Conservative assumptions were made regarding annual water intake by humans, canister design lifetime, and aquifer flow rates. A safety margin of 10-3 of the ALI was applied. We selected 56 radionuclides that exceed the intake limits and have half-lives longer than one year as the safety-related radionuclides. However, it is crucial to note that our selection criteria focused on ALI and half-lives. It did not include other essential factors such as solubility limits, distribution coefficients, and leakage processes. So, some of these nuclides can be removed in a specific analysis area depending on their properties.
        49.
        2023.11 구독 인증기관·개인회원 무료
        The HADES (High-level rAdiowaste Disposal Evaluation Simulator) was developed by the Nuclear Fuel Cycle & Nonproliferation (NFC) laboratory at Seoul National University (SNU), based on the MOOSE Framework developed by the Idaho National Laboratory (INL). As an application of the MOOSE Framework, the HADES incorporates not only basic MOOSE functions, such as multi-physics analysis using Finite Element Method (FEM) and various solvers, but also additional functions for estimating the performance assessment of Deep Geological Repositories (DGR). However, since the MOOSE Framework does not have complex mesh generation and data analyzing capabilities, the HADES has been developed to incorporate these missing functions. In this study, although the Gmsh, finite element mesh generation software, and Paraview, finite element analysis software, were used, other applications can be utilized as well. The objectives of HADES are as follows: (i) assessment of the performance of a Spent Nuclear Fuel (SNF) disposal system concerning Thermal-Hydraulic-Mechanical-Chemical (THMC) aspects; (ii) Evaluation of the integrity of the Engineered Barrier System (EBS) of both general and high-efficiency design perspective; (iii) Collaboration with other researchers to evaluate the disposal system using an open-source approach. To achieve these objectives, performance assessments of the various disposal systems and BMTs (BenchMark Test), conducted as part of the DECOVALEX projects, were studied regarding TH behavior. Additionally, integrity assessments of various DGR systems based on thermal criteria were carried out. According to the results, HADES showed very reasonable results, such as evolutions and distributions of temperature and degree of saturation, when compared to validated code such as TOUGH-FLAC, ROCMAS, and OGS (OpenGeoSys). The calculated data are within the range of estimated results from existed code. Furthermore, the first version of the code, which can estimate the TH behavior, has been prepared to share the contents using Git software, a free and open-source distribution system.
        50.
        2023.11 구독 인증기관·개인회원 무료
        For the sake of future generations, the management of radioactive waste is essential. The disposal of spent nuclear fuel (SNF) is considered an urgent challenge to ensure human safety by storing it until its radioactivity drops to a negligible level. Evaluating the safety of disposal facilities is crucial to guarantee their durability for more than 100,000 years, a period sufficient for SNF radioactivity to become ignored. Past studies have proposed various parameters for forecasting the safety of SNF disposal. Among these, radiochemistry and electrochemistry play pivotal roles in predicting the corrosion-related chemical reactions occurring within the SNF and the structural materials of disposal facilities. Our study considers an extreme scenario where the SNF canister becomes compromised, allowing underground water to infiltrate and contact the SNF. We aim to improve the corrosion mechanism and mass-balance equation compared with what Shoesmith et al. proved under the same circumstances. To enhance the comprehensibility of the chemical reactions occurring within the breached SNF canister, we have organized these reactions into eight categories: mass diffusion, alpha radiolysis, adsorption, hydrate formation, solidification, decomposition, ionization, and oxidation. After categorization, we define how each species interacts with others and calculate the rate of change in species’ concentrations resulting from these reactions. By summing up the concentration change rates of each species due to these reactions, we redefine the mass-balance equations for each species. These newly categorized equations, which have not been explained in detail previously, offer a detailed description of corrosion reactions. This comprehensive understanding allows us to evaluate the safety implications of a compromised SNF canister and the associated disposal facilities by numerically solving the mass-balance equations.
        51.
        2023.11 구독 인증기관·개인회원 무료
        As part of the preparation of a glossary of terminologies related to the disposal of spent nuclear fuel, definitions of potentially issuable terminologies used in domestic regulations were inferred from relevant regulations or comparatively analyzed with foreign definitions. These terminologies are safety assessment and performance assessment, safety function and safety performance, disposal containers and package, isolation and containment, and so on. Their concise and easy-to-understand definitions have been proposed in order to obtain these opinions of stakeholders.
        52.
        2023.11 구독 인증기관·개인회원 무료
        The objective of this study is development of graphite-boron composite material as a replacement for metal canisters to Improve the heat dissipation and radiation shielding performance of dry spent nuclear fuel storage system and reduce the volume of waste storage system. KEARI research team plan to use the graphite matrix manufacturing technology to pelletize the graphite matrix and adjust the content of phenolic resin binder to minimize pore formation. Specifically, we plan to adjust the ratio of natural and synthetic graphite powder and use uniaxial pressing technology to manufacture black graphite matrix with extremely high radial thermal conductivity. After optimizing the thermal conductivity of the graphite matrix, we plan to mix it with selected boron compounds, shape it, and perform sintering and purification heat treatments at high temperatures to manufacture standard composite materials.
        53.
        2023.11 구독 인증기관·개인회원 무료
        Currently, the most promising fuel candidate for use in sodium fast reactors (SFRs) is metallic fuel, which is produced by a modified casting method in which the metallic fuel material is sequentially melted in an inert atmosphere to prevent volatilization, followed by melting in a graphite crucible, and then injection casting in a quartz (SiO2) mold to produce metallic fuel slugs. In previous studies, U-Zr metallic fuel slugs have been cast using Y2O3 reaction prevent coatings. However, U-Zr alloy-based metallic fuel slugs containing highly reactive rare earth (RE) elements are highly reactive with Y2O3-coated quartz (SiO2) molds and form a significant thickness of surface reaction layer on the surface of the metallic fuel slug. Cast parts that have reacted with nuclear fuel materials become radioactive waste. To decrease amount of radioactive waste, advanced reaction prevent material was developed. Each RE (Nd, Ce, Ln, Pr) element was placed on the reaction prevent material and thermal cycling experiments were carried out. In casting experiments with U-10wt% Zr, it was reported that Y2O3 layer has a high reaction prevent performance. Therefore, the reaction layer properties for RE elements with higher reactivity than uranium elements were evaluated. To investigate the reaction layer between RE and NdYO3, the reaction composition and phase properties as a function of RE content and location were investigated using SEM, EDS, and XRD. The results showed that NdYO3 ceramics had better antireaction performance than Y2O3.
        54.
        2023.11 구독 인증기관·개인회원 무료
        Dry storage of nuclear fuel is compromised by threats to the cladding integrity, such as creep and hydride reorientation. To predict these phenomena, spent fuel simulation codes have been developed. In spent fuel simulation, temperature information is the most influential factor for creep and hydride formation. Traditional fuel simulation codes required a user-defined temperature history input which is given by separate thermal analysis. Moreover, geometric changes in nuclear fuel, such as creep, can alter the cask’s internal subchannels, thereby changing the thermal analysis. This necessitates the development of a coupled thermal and nuclear fuel analysis code. In this study, we integrated the 2D FDM nuclear fuel code GIFT developed at SNU with COBRA -SFS. Using this, we analyzed spent nuclear stored in TN-24P dry storage cask over several decades and identified conditions posing threats due to phenomena like creep and hydrogen reorientation, represented by the burnup and peak cladding temperature at the start of dry storage. We also investigated the safety zone of spent nuclear fuel based on burnup and wet storage duration using decay heat.
        55.
        2023.11 구독 인증기관·개인회원 무료
        A comparison and validation between the analysis and vibration test data of a nuclear fuel assembly were conducted. During the comparison and validation process, various parameters that govern the vibration behavior of the fuel assembly were determined, including nuclear fuel rod’s stiffness, spring constants of the dimple and spring of support structures, and damping coefficients. The calibration of the vibration analysis model aimed to find analysis parameters that can accurately simulate the vibration behavior of the test data. For calibration, power spectral density (PSD) diagrams were generated for both the measured signals from the test and the calculated signals from the analysis. The correlation coefficient between these two PSD plots was calculated. To find the analysis parameters, each parameter was defined as a variable with an appropriate range. Latin hypercube sampling was used to generate multiple sample points in the variable space. Analysis was performed for the generated sample points, and PSD plot correlation coefficients were calculated. Using the generated sample points and their corresponding results, a Gaussian Process Regression model was implemented for PSD plot correlation coefficients and the maximum PSD value. Based on the constructed surrogate model, the optimal analysis parameters were easily found without additional computations. Through this method, it was confirmed that the analysis model using the optimal parametes appropriately simulates the vibration behavior of the test.
        56.
        2023.11 구독 인증기관·개인회원 무료
        In this study, a fracture evaluation of the spent nuclear fuel storage canister was conducted. Stainless steel alloys are typically used as the material for canisters, and therefore, a separate destructive evaluation is not required for safety analysis reports. However, in this research, a methodology for conducting a destructive evaluation was proposed for assessing the acceptability of cracks detected during in-service inspections for long-term storage due to reasons such as stress corrosion cracking. For the fracture evaluation, analytical equations provided in the design code such ASME were employed, and finite element method (FEM) based linear elastic fracture mechanics (LEFM) was performed to validate the effectiveness of the analytical equations. Impact analyses such as tip-over of the storage cask on a concrete pad were performed, and the fracture evaluation using stresses resulting from the impact analysis under accident conditions and residual stresses from welds were carried out. Through this research, geometric dimensions for cracks exceeding the fracture criteria were established.
        57.
        2023.11 구독 인증기관·개인회원 무료
        Currently, the development of evaluation technology for vibration and shock loads transmitted to spent nuclear fuel and structural integrity of spent nuclear fuel under normal conditions of transport is progressing in Korea by the present authors. Road transportation tests using surrogate spent nuclear fuel were performed in September, 2020 using a test model of KORAD-21 transportation cask and sea transportation tests were conducted from September 30 to October 4, 2021. Finally, the shake table tests and rolling test were conducted from October 31 to November 2, 2022. As a result of the sea transportation test data analysis, an impact load resulting from the collision of objects was measured on fuel rods of a surrogate spent nuclear fuel assemblies during the rolling test was observed. Excessive rolling motion occurred on the ship during the rolling test, causing the surrogate spent nuclear fuel assemblies to slip and collide with the canister. To analyze under which conditions such impact loads occur and whether this event is possible under normal conditions of transport of spent nuclear fuel, a test was designed to simulate the rolling test in sea transportation and was performed. The rolling test was conducted on ACE7 and PLUS7 assemblies, respectively, varying the rolling angle and rolling frequency to determine at which angles and frequencies the assemblies experienced slippage. According to the test results, slippage of the used nuclear fuel assemblies can occur due to rolling motion at angles of approximately 14° or higher, leading to the possibility of generating impact loads. It was observed that the rolling angle is a more major factor for slippage than the rolling frequency. This exceeds the conditions under which a vessel can be permitted to depart for coastal navigation, thus it is considered to deviate from the normal conditions of transport of spent nuclear fuel. Therefore, it is not necessary to consider such loads for evaluating the integrity of spent nuclear fuel during normal transportation conditions.
        58.
        2023.11 구독 인증기관·개인회원 무료
        For efficient design and manufacture of PWR spent fuel burnup detector, data simulated with various condition of spent fuel in the NPP storage pool is required. In this paper, to derive performance requirements of spent fuel burnup detector for neutron flux and dose rates were evaluated at various distances from CE16 and WH17 types of fuel, representatively. The evaluation was performed by the following steps. First, the specifications of the spent fuel, such as enrichment, burnup, cooling time, and fuel type, were analyzed to find the conditions that emit maximum radioactivity. Second, gamma and neutron source terms of spent fuel were analyzed. The gamma source terms by actinides and fission products and neutron source terms by spontaneous and (α, n) reactions were calculated by SCALE6 ORIGAMI module. Third, simulation input data and model were applied to the evaluation. The material composition and dose conversion factor were referred as PNNL-15870 and ICRP-74 data, respectively and dose rates were displayed with the MCNP output data. It was assumed that there was only one fuel modeled by MCNP 6.2 code in pool. The evaluation positions for each distance were selected as 5 cm, 10 cm, 25 cm, 50 cm, and 1 m apart from the side of fuel, respectively. Fourth, neutron flux and dose rates were evaluated at distance from each fuel type by MCNP 6.2 code. For WH 17 types with a 50 GWd/MTU burnup from 5 cm distance close to fuel, the maximum neutron flux, gamma dose rates and neutron dose rates are evaluated as 1.01×105 neutrons/sec, 1.41×105 mSv/hr and 1.61×101 mSv/hr, respectively. The flux and dose rate of WH type were evaluated to be larger than those of CE type by difference in number of fuel rods. The relative error for result was less than 3~7% on average secured the reliability. It is expected that the simulated data in this paper could contribute to accumulate the basic data required to derive performance requirements of spent fuel burnup detector.
        59.
        2023.11 구독 인증기관·개인회원 무료
        Notice of the NSSC No.2021-14 defines the term ‘Neutron Absorber’ as a material with a high neutron absorption cross section, which is used to prevent criticality during nuclear fission reactions and includes neutron absorbers as target items for manufacture inspection. U.S.NRC report of the NUREG-2214 states that the subcriticality of spent nuclear fuel (SNF) in Dry Storage Systems (DSSs) may be maintained, in part, by the placement of neutron absorbers, or poison plates, around the fuel assemblies. This report mentions the need for Time-Limited Aging Analysis (TLAA) on depletion of Boron (10B) in neutron absorbers for HI-STORM 100 and HISTAR 100. Also, this report mentions that 10B depletion occurs during neutron irradiation of neutron absorbers, but only 0.02% of the available 10B is to be depleted through conservative assumptions regarding the neutron flux or accumulated fluence during irradiation, which supports the continued use of the neutron absorbers in the SNF dry storage cask even after 60 years of evaluated period. There are several types of commercially available neutron absorbers, broadly classified into Boron Carbide Cermets (e.g., Boral®), Metal Matrix Composites (MMC) (e.g., METAMIC), Borated Stainless Steel (BSS), and Borated Al alloy. While irradiation tests for neutron absorbers are primarily conducted during wet storage systems, there are also some prior studies available on irradiation tests for neutron absorbers during dry storage systems. For examples, there is an analysis of previous research on high-temperature irradiation test of metallic materials and identification of limitations in existing methodologies were conducted. Furthermore, an improvement plan for simulating the high-temperature irradiation damage of neutron absorbers was developed. In report published by corrosion society summarizes the evaluation results of the degradation mechanisms for Stainless Steel- and Al-based neutron absorbers used in SNF dry storage systems.
        60.
        2023.11 구독 인증기관·개인회원 무료
        The saturation of wet storage facilities constructed and operated within nuclear power plant sites has magnified the significance of research concerning the dry storage of spent nuclear fuel. Not only do wet storage facilities incur higher operational and maintenance costs compared to dry storage facilities, but long-term storage of metal-clad fuel assemblies submerged in aqueous tanks is deemed unsuitable. Consequently, dry storage is anticipated to gain prominence in the future. Nevertheless, it is widely acknowledged that quantitatively assessing the residual water content remains elusive even when employing the apparatus and procedures utilized in the existing dry storage processes. The presence of residual water can only be inferred from damage or structural alterations to the spent nuclear fuel during its dry storage, making precise prediction of this element crucial, as it can be a significant contributor to potential deformations and deterioration. The aforementioned challenges compound the issue of retrievability, as substantial complexities emerge when attempting to retrieve spent nuclear fuel for permanent disposal in the future. Consequently, our research team has established a laboratory-scale vacuum drying facility to investigate the sensitivity of various parameters, including canister volume, pump capacity, water surface area, and water temperature, which can exert thermohydraulic influences on residual water content. Moreover, we have conducted dimensional analysis to quantify the thermohydraulic effects of these parameters and express them as dimensionless numbers. These analytical approaches will subsequently be integrated into predictive models for residual water content, which will be further developed and validated at pilot or full-scale levels. Furthermore, our research team is actively engaged in experimental investigations aimed at fine-tuning the duration of the pressure-holding phase while optimizing the evaporation process under conditions designed to avert the formation of ice caused by abrupt temperature fluctuations. Given that the canister is constructed from acrylic material, we are able to identify, from a phenomenological perspective, the specific juncture at which the boiling phenomenon becomes manifest during the vacuum drying process.
        1 2 3 4 5