In order to optimize the manufacturing of polypropylene-derived few-layer graphene, an innovative utilization of nonsupported iron oxide nanoparticles generated under various fuel environment conditions was studied. Three distinct fuel combustion environment circumstances (fusion, fuel shortage, and fuel excess) produced a variety of Fe2O3 nanoparticles for cost-effective and green graphene deposition. XRD, H2- TPR, Raman, and TGA measurements were used to characterize both new and spent catalysts. Remarkably, the microstructure of the generated Fe2O3 nanoparticles could be controlled by the citric acid/iron nitrate ratio, ranging from spheroids ( Fe2O3(0)) to sheets ( Fe2O3(0.5-0.75)) and a hybrid microstructure that consists of sheets, spheroids, and interconnected strips ( Fe2O3(1-2)). According to fuel situation (citric acid/iron nitrate ratio, Fe2O3( 0-2)), various graphitization level and yields of graphene derivatives including sheets, ribbons, and onions have been developed. With the ideal fuel/oxidant ratio (ɸ = 1), the Fe2O3( 0.75) catalyst demonstrated the best catalytic activity to deposit the largest yield of highly graphitized few graphene layers (280%). Lean and rich fuel conditions (1 > ɸ > 1) have detrimental effects on the amount and quality of graphene deposition. It is interesting to note that in addition to graphene sheets, an excess of citric acid caused the production of metallic cores, hollow, and merged carbon nano-onions, and graphene nano-ribbons. It was suggested that carbon nano-onions be converted into graphene nano-ribbons and semi-onion shell-like graphene layers.
Researchers have made significant strides in developing high-performance anode-supported tubular solid oxide fuel cells (SOFCs). These cells feature a thin, dense electrolyte made of Ba(Zr0.1Ce0.7Y0.2)O3-δ (BZCY). The fabrication process involved several key steps. First, fine BZCY powder was prepared using a co-precipitation method. Next, Ni-BZCY anode tubes were created via an extrusion process, boasting a 34 % porosity and an average pore size of 0.381 μm. To optimize cell performance, a Ni-BZCY/BZCY nanocomposite slurry was applied as an anode functional layer (AFL) using a dip-coating method. The BZCY electrolyte itself was then coated with a vacuum slurry coating, and finally, an LSCF-BZCY cathode was added, prepared with dip-coating methods. Impedance analysis, conducted under open-circuit conditions at 700 °C, revealed impressive electrical characteristics. The BZCY electrolyte showed an ohmic resistance of approximately 0.79 Ωcm-2 and a very low polarization resistance of about 0.036 Ωcm-2. When tested in a humidified hydrogen atmosphere (3 % H2O) at temperatures ranging from 600 °C to 700 °C, these tubular BZCY cells delivered outstanding power output. Specifically, they achieved a remarkable maximum power density of roughly 0.51 Wcm-2 at 700 °C. This research highlights the potential of these advanced tubular solid oxide fuel cells based on the BZCY as a proton conductor for efficient energy conversion.
The recent development of small modular reactors (SMRs) and the adoption of higher-enrichment fuels have intensified the need for advanced burnable absorbers to ensure effective reactivity control and extended fuel cycles. Among various designs, UO2 fuels with high Gd2O3 (gadolinium oxide) content provide notable benefits; in particular, they are compatible with established fabrication methods for burnable absorber fuels. However, achieving a homogeneous dispersion of Gd2O3 at high loading levels remains challenging, and the frequent occurrence of phase segregation and non-uniform microstructures can limit fuel reliability and performance. Overcoming these limitations requires an understanding of the powder characteristics and mixing behaviors during fabrication. In this study, we investigate the effects of the initial particle size and mixing method of UO2 and Gd2O3 powders on the microstructure and mixing homogeneity of high-Gd2O3-content fuels. The findings indicate that both the mixing method and the preparation state of the starting powders significantly affect the resulting microstructure and mixing uniformity.
Lithium- and manganese-rich layered oxide (LMRO) is considered a promising cathode material for lithium-ion batteries owing to its high capacity and energy density. However, operation at a high voltage of 4.8 V leads to several issues including low Coulombic efficiency, poor cycle life, slow kinetics, and voltage decay due to spinel phase transition, hindering commercialization. Herein, we synthesized a cobalt-free LMRO cathode and studied the effect of Nb2O5 and Sb2O3 coating layers on electrochemical performance. The Nb2O5 coating facilitated the formation of a LiNbO3 layer, which enhanced the initial electrochemical performance, including Coulombic efficiency and energy density. Meanwhile, Sb2O3 not only coated the surface but also doped into the bulk structure, thereby increasing capacity and improving rate capability. Comparative analysis using materials with different structural solubility revealed how oxide coatings influenced lithium-ion transport and electrochemical behavior. This study highlights the importance of interfacial engineering for optimizing LMRO cathodes for high-performance lithium-ion batteries.
Toxic gas emissions are a critical global health concern, responsible for numerous deaths each year. These hazardous gases can cause severe physiological reactions and even death upon exposure. To address this issue, we propose a graphene-Kaptonbased flexible biosensor for non-invasive toxic gas detection. The sensor is designed to accurately detect and identify several harmful gases, including carbon monoxide (CO), fluorine azide ( FN3), hydrogen iodide (HI), nitrogen ( N2), methane ( CH4), nitrous oxide ( N2O), and ozone ( O3). Utilizing the Computer Simulation Technology (CST) Studio Suite 2024, we simulate the detection process, focusing on advanced techniques and miniature flexible structures. The sensor’s active element is a graphene patch embedded within a polyimide (Kapton) film, which allows for precise determination of the RF planar resonant structure’s frequency response. The graphene–Kapton biosensor is shown to have remarkable detection performance, as demonstrated by the results of the simulation, with a diffusivity of 9.09e−08[m2∕S] , an accuracy of 6.62e−13 , and a power loss of 1.5mW . These findings highlight the sensor’s potential as an effective tool for detecting and identifying toxic gases with high precision and efficiency.
This study focused on optimizing the digital light processing (DLP) 3D printing process for high-precision ceramic components using alumina-based slurries. Key challenges, such as cracking during debinding and precision loss due to slurry sedimentation, were addressed by evaluating the exposure time and the nano-to-micro alumina powder ratios. The optimal conditions—exposure time of 15 seconds and a 1:9 mixing ratio—minimized cracking, improved gas flow during debinding, and increased structural precision. Microchannels with diameters above 1.2 mm were successfully fabricated, but channels below 0.8 mm faced challenges due to slurry accumulation and over-curing. These results establish a reliable process for fabricating complex ceramic components with improved precision and structural stability. The findings have significant potential for applications in high-value industries, including aerospace, energy, and healthcare, by providing a foundation for the efficient and accurate production of advanced ceramic structures.
Piezoelectric composites have attracted significant research interest as sustainable power sources for electronic devices due to their high mechanical stability and electrical output characteristics. This study investigated the optimal processing conditions for fabricating a flexible piezoelectric energy harvester based on Pb(Zr,Ti)O3 (PZT) powder and a polyimide (PI) matrix composite. Various parameters, including the optimal mixing ratio of PI/PZT, ultrasonic treatment, homogenization, vacuum oven, and UV/O3 treatment, were optimized to achieve a uniform piezoelectric composite. A PZT content of 30 wt% and 20 minutes of homogenization were identified as the most effective conditions for increasing the uniformity of the composite. The optimized composite exhibited a high piezoelectric coefficient, a typical P-E hysteresis loop, and dielectric properties, exhibiting a voltage output that adjusts in response to variations in the applied touch force. This study provides foundational data for the uniform fabrication of flexible piezoelectric energy harvesters and next-generation miniaturized electronic devices.
Ceramic materials have become essential due to their high durability, chemical stability, and excellent thermal stability in various advanced industries such as aerospace, automotive, and semiconductor. However, high-performance ceramic materials face limitations in commercialization due to the high cost of raw materials and complex manufacturing processes. Aluminum borate (Al₁₈B₄O₃₃) has emerged as a promising alternative due to its superior mechanical strength and thermal stability, despite its simple manufacturing process and low production cost. In this study, we propose a method for producing Al₁₈B₄O₃₃ spherical powder with increased uniformity and high flowability by controlling the particle size of B₂O₃. The content ratio of the manufactured Al18B4O33 spherical powder was Al2O3: B2O3 = 87:13, and it exhibited a 17% reduction in the Hausner ratio (1.04) and a 29% decrease in the angle of repose (23.9°) compared to pre-milling conditions, demonstrating excellent flowability.
Iron oxide (ε-Fe2O3) is emerging as a promising electromagnetic material due to its unique magnetic and electronic properties. This review focuses on the intrinsic properties of ε-Fe2O3, particularly its high coercivity, comparable to that of rare-earth magnets, which is attributed to its significant magnetic anisotropy. These properties render it highly suitable for applications in millimeter wave absorption and high-density magnetic storage media. Furthermore, its semiconducting behavior offers potential applications in photocatalytic hydrogen production. The review also explores various synthesis methods for fabricating ε-Fe2O3 as nanoparticles or thin films, emphasizing the optimization of purity and stability. By exploring and harnessing the properties of ε-Fe2O3, this study aims to contribute to the advancement of next-generation electromagnetic materials with potential applications in 6G wireless telecommunications, spintronics, high-density data storage, and energy technologies.
Chironomid larvae in drinking water treatment plants (DWTPs) and tap water lead to highlights the urgent need for effective control measures. The use of combined disinfectant treatments is becoming increasingly common to achieve optimal disinfection efficiency while minimizing residual contamination. This study was conducted to study the effect of combined treatment of disinfectants used in DWTPs on the biological control potential of chironomid larvae. In the experiment, Glytotendipes tokunagai larvae reared according to OECD guidelines were exposed to NaOCl, UV, and O3 complex substances, and biological responses were analyzed using survival rate and body color change as key indicators for 24 hours. The survival rate of larvae exposed to combined disinfectants mostly decreased in a time- and concentration-dependent manner, and lightening of body color was observed. The most significant decrease (53%) of the survival rate was observed to a combination of UV and 4 ppm NaOCl disinfectants and body color change also showed a statistically significant difference compared to the control group (P<0.001). The change in body color is suggested to be a physiological change caused by oxidation of hemoglobin due to exposure to disinfectant complexes. The results of this study contribute to determining the biological impact of combined disinfectant treatment on chironomid larvae of DWTPs, and can be used as data to suggest the biological control potential of disinfectants. In addition, it will provide important information for setting standards for combined disinfectant treatment to improve water quality in the future.
Hot section components of gas turbines are exposed to a high operating temperature environment. To protect these components, thermal barrier coatings (TBC) are applied to their surfaces. Yttria-stabilized zirconia (YSZ), which is widely used as a TBC material, faces limitations at temperatures above 1200 °C. To mitigate these issues, research has focused on adding lanthanide rare earth oxides and tetravalent oxides to prevent the phase-transformation of the monoclinic phase in zirconia. This study investigated the effects of varying TiO2 content in Nd2O3 and Yb2O3 co-doped YSZ composites. Increasing TiO2 content effectively suppressed formation of the monoclinic phase and increased the thermal degradation resistance compared to YSZ in environments over 1200 °C. These findings will aid in developing more thermally stable and efficient TBC materials for application in high-temperature environments.
이 실험에서는 α-Al2O3 지지체 위에 진공 코팅(vacuum coating)과 딥 코팅(dip-coating) 기법을 사용하여 GO/γ -Al2O3 중간층을 형성하였고, 무전해도금 방식을 통해 Pd-Ag 수소 분리막을 제작하였다. Pd와 Ag는 각각 무전해도금을 통해 지지체 표면에 증착되었으며, 합금화를 위해 도금 과정 중 H2 분위기 하에서 500°C에서 18 h 동안 열처리를 진행하였다. 제 조된 분리막의 표면과 단면은 SEM을 통해 분석되었으며, Pd-Ag 분리막의 두께는 1.88 μm, GO/γ-Al2O3 중간층을 가진 Pd-Ag 분리막의 두께는 1.07 μm로 측정되었다. EDS 분석을 통해 Pd-77%, Ag-23%의 조성으로 합금이 형성된 것을 확인하 였다. 기체투과 실험은 H2 단일가스와 H2/N2 혼합가스를 이용하여 수행되었다. H2 단일가스 투과실험에서 450°C, 4 bar 조건 하에서 Pd 분리막의 최대 H2 플럭스는 0.53 mol/m²·s로, Pd-Ag 분리막의 경우 0.76 mol/m²·s로 측정되었다. H2/N2 혼합가스 실험에서 측정된 분리막의 separation factor는 450°C, 4 bar 조건에서 Pd 분리막이 2626, Pd-Ag 분리막이 13808로 나타났다.
Pyrolysis of methane is a carbon-economic method to obtain valuable carbon materials and COx- free H2, under the carbon peaking and carbon neutrality goals. In this work, we propose a methane pyrolysis process to produce graphite and H2 using bubble column reactor containing NiO/Al2O3 and NaCl–KCl (molten salt). The process was optimized by the different amounts of NaCl–KCl, the CH4/ Ar ratio and temperature, indicating that the CH4 conversation rate could reach 92% at 900 °C. Meanwhile, we found that the addition of molten salt could obtain pure carbon materials, even if the conversation rate of CH4 decreases. The analysis of the carbon products revealed that graphite could be obtained.
We report a new route of akaganéite (β-FeOOH) formation and maghemite (γ-Fe2O3) formation. Akaganéite can be produced by stirring Fe2+ at room temperature for a day under mild conditions. We used FeCl2 ·4H2O as the precursor and mixed it with the Na-rich particle from the oxidation debris solution. The role of the concentration ratio between graphene oxide (GO) and NaOH was addressed to generate oxidation debris (OD) on the surface. In particular, the characterization of OD by transmission electron microscope (TEM) imaging provides clear evidence for the crystal formation of Na-rich particle under electron beam irradiation. For the base treatment process, increasing the concentration of a NaOH in Na-rich solution contributed primarily to the formation of γ-Fe2O3. The characterization by scanning electron microscope (SEM) and TEM showed that the morphology was changed from needle-like to small-oval form. In addition, β-FeOOH can be effectively produced directly using GO combined with FeCl2 ·4H2O at room temperature. More specifically, the role of parent material (Hummer's GO and Brodie's GO) was discussed, and the crystal transformation was identified. Our results concluded that β-FeOOH can be formed in basic and acidic conditions.
La modified lead zirconate titanate ceramics (Pb0.92La0.08)(Zr0.95Ti0.05)O3 = PLZT-8/95/5 were prepared using the conventional solid state reaction method in order to investigate the complex impedance characteristics of the PLZT-8/95/5 ceramic according to temperature. The complex impedance in the PLZT-8/95/5 ceramic was measured over a temperature range of 30~550 °C at several frequencies. The complex dielectric constant anomaly of the phase transition was observed near TU1 = 179 °C and TU2 = 230 °C. A remarkable diffuse dielectric constant anomalous behaviour of the complex dielectric constant was found between 100 °C and 550 °C. The complex impedance spectra below and above TU1 and TU2 were fitted by the superposition of two Cole-Cole types of impedance relaxations. The fast component in the higher frequency region may be due to ion migration in the bulk, and the slow component in the lower frequency region is interpreted to be the formation and migration of ions at the grain boundary or electrode/crystal interfacial polarization.