검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 405

        1.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pyrolysis of methane is a carbon-economic method to obtain valuable carbon materials and COx- free H2, under the carbon peaking and carbon neutrality goals. In this work, we propose a methane pyrolysis process to produce graphite and H2 using bubble column reactor containing NiO/Al2O3 and NaCl–KCl (molten salt). The process was optimized by the different amounts of NaCl–KCl, the CH4/ Ar ratio and temperature, indicating that the CH4 conversation rate could reach 92% at 900 °C. Meanwhile, we found that the addition of molten salt could obtain pure carbon materials, even if the conversation rate of CH4 decreases. The analysis of the carbon products revealed that graphite could be obtained.
        4,000원
        2.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We report a new route of akaganéite (β-FeOOH) formation and maghemite (γ-Fe2O3) formation. Akaganéite can be produced by stirring Fe2+ at room temperature for a day under mild conditions. We used FeCl2 ·4H2O as the precursor and mixed it with the Na-rich particle from the oxidation debris solution. The role of the concentration ratio between graphene oxide (GO) and NaOH was addressed to generate oxidation debris (OD) on the surface. In particular, the characterization of OD by transmission electron microscope (TEM) imaging provides clear evidence for the crystal formation of Na-rich particle under electron beam irradiation. For the base treatment process, increasing the concentration of a NaOH in Na-rich solution contributed primarily to the formation of γ-Fe2O3. The characterization by scanning electron microscope (SEM) and TEM showed that the morphology was changed from needle-like to small-oval form. In addition, β-FeOOH can be effectively produced directly using GO combined with FeCl2 ·4H2O at room temperature. More specifically, the role of parent material (Hummer's GO and Brodie's GO) was discussed, and the crystal transformation was identified. Our results concluded that β-FeOOH can be formed in basic and acidic conditions.
        4,600원
        3.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Herein, the present work focuses on the effective counter electrode for dye-sensitized solar cells. The bottom–up approach was adapted to synthesize Mn2O3 nanorods via the hydrothermal method and the reduced graphene oxide was merged with Mn2O3 to prepare a nanocomposite. The prepared nanocomposites were subjected to physio-chemical and morphological characterizations which revealed the crystalline nature of Mn2O3 nanorods. The purity level rGO was characterized using the Raman spectrum and the Fourier transform infrared spectroscopy employed to find the functional groups. The morphological micrographs were visualized using SEM and TEM and the high aspect ratio Mn2O3 nanorods were observed with 5–7 nm and supported by rGO sheets. The electrocatalytic nature and corrosion properties of the counter electrode towards the iodide electrolyte were studied using a symmetrical cell. The as-synthesized nanocomposites were introduced as counter electrodes for DSSC and produced 4.11% of photoconversion efficiency with lower charge transfer resistance. The fabricated DSSC devices were undergone for stability tests for indoor and outdoor atmospheres, the DSSC stability showed 93% and 80% respectively for 150 days.
        4,000원
        4.
        2024.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        La modified lead zirconate titanate ceramics (Pb0.92La0.08)(Zr0.95Ti0.05)O3 = PLZT-8/95/5 were prepared using the conventional solid state reaction method in order to investigate the complex impedance characteristics of the PLZT-8/95/5 ceramic according to temperature. The complex impedance in the PLZT-8/95/5 ceramic was measured over a temperature range of 30~550 °C at several frequencies. The complex dielectric constant anomaly of the phase transition was observed near TU1 = 179 °C and TU2 = 230 °C. A remarkable diffuse dielectric constant anomalous behaviour of the complex dielectric constant was found between 100 °C and 550 °C. The complex impedance spectra below and above TU1 and TU2 were fitted by the superposition of two Cole-Cole types of impedance relaxations. The fast component in the higher frequency region may be due to ion migration in the bulk, and the slow component in the lower frequency region is interpreted to be the formation and migration of ions at the grain boundary or electrode/crystal interfacial polarization.
        4,000원
        6.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 실험에서는 α-Al2O3 지지체에 무전해도금을 이용하여 Pd-Ag-Cu 분리막을 제조하였다. Pd, Ag, Cu는 각각 무 전해도금을 통해 지지체 표면에 코팅하였고, 합금의 형성을 위해 무전해도금 중간에 H2, 500°C의 조건에서 18 h 동안 열처리 를 진행하였다. 이를 통해 제조된 Pd-Ag-Cu 분리막은 SEM을 통해 표면을 관찰하였으며, Pd 분리막의 두께는 7.82 μm, Pd-Ag-Cu 분리막의 두께는 3.54 μm로 측정되었다. EDS와 XRD 분석을 통해 Pd-Ag-Cu 합금이 Pd-78%, Ag-8.81%, Cu-13.19%의 조성으로 형성된 것을 확인하였다. 기체투과 실험은 H2 단일가스와 H2/N2 혼합가스에서 실험을 진행하였다. H2 단일가스에서 측정한 수소 분리막의 최대 H2 flux는 Pd 분리막의 경우 450°C, 4 bar에서 74.16 ml/cm2·min이고, Pd-Ag-Cu 분리막의 경우 450°C, 4 bar에서 113.64 ml/cm2·min인 것을 확인하였고, H2/N2 혼합가스에서 측정한 separation factor의 경우 450°C, 4 bar에서 각각 2437, 11032의 separation factor가 측정되었다.
        4,000원
        7.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Composite-based piezoelectric devices are extensively studied to develop sustainable power supply and selfpowered devices owing to their excellent mechanical durability and output performance. In this study, we design a leadfree piezoelectric nanocomposite utilizing (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 (BCTZ) nanomaterials for realizing highly flexible energy harvesters. To improve the output performance of the devices, we incorporate porous BCTZ nanowires (NWs) into the nanoparticle (NP)-based piezoelectric nanocomposite. BCTZ NPs and NWs are synthesized through the solidstate reaction and sol-gel-based electrospinning, respectively; subsequently, they are dispersed inside a polyimide matrix. The output performance of the energy harvesters is measured using an optimized measurement system during repetitive mechanical deformation by varying the composition of the NPs and NWs. A nanocomposite-based energy harvester with 4:1 weight ratio generates the maximum open-circuit voltage and short-circuit current of 0.83 V and 0.28 A, respectively. In this study, self-powered devices are constructed with enhanced output performance by using piezoelectric energy harvesting for application in flexible and wearable devices.
        4,000원
        8.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Al2O3 has excellent sintering properties and is important in semiconductor manufacturing processes that require high-temperature resistance and chemical inertness in a plasma environment. In this study, a comprehensive analysis of the chemical characteristics, physical properties, crystal structure, and dispersion stability of three commercially available Al2O3 powders was conducted. The aim was to provide a technological foundation for selecting and utilizing appropriate Al2O3 powders in practical applications. All powders exhibited α-Al2O3 as the main phase, with the presence of beta-phase Na2O-11Al2O3 as the secondary phase. The highest Na+ ion leaching was observed in the aqueous slurry state due to the presence of the secondary phase. Although the average particle size difference among the three powders was not significant, distinct differences in particle size distribution were observed. ALG-1SH showed a broad particle size distribution, P162 exhibited a bimodal distribution, and AES-11 displayed a uniform unimodal distribution. Highconcentration Al2O3 slurries showed differences in viscosity due to ion release when no dispersant was added, affecting the electrical double-layer thickness. Polycarboxylate was found to effectively enhance the dispersion stability of all three powders. In the dispersion stability analysis, ALG-1SH exhibited the slowest sedimentation tendency, as evidenced by the low TSI value, while P162 showed faster precipitation, influenced by the particle size distribution.
        4,000원
        9.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hierarchically porous carbon foam composites with highly dispersed Fe2O3 nanoparticles confined in the foam pores, facilely fabricated by hydrolysis-driven emulsion polymerization strategy. The as-generated acidic conditions of Fe3+ hydrolysis could catalyze the polymerization of phenolic resin, and the carbon-based composite materials containing iron oxides were obtained in situ. The structural characterization results show that HCF@Fe2O3 NPs-2 electrode has the largest specific surface area (549 m2/ g) and pore volume (0.46 cm3/ g). Electrochemical results indicates that typical HCF@Fe2O3 NPs-2 electrode displays good capacitive properties. including high specific capacitance (225 F/g at 0.2 A/g current density). Excellent magnification performance (capacity retention rate 80% as current density increases from 0.2 to 10 A/g). At the same time, HCF@SnO2 NPs was successfully synthesized by replacing hydrolyzed tin tetrachloride with ferric chloride. This study provides a new idea for the preparation of metal oxide–carbon matrix composites, and also highlights the potential of such carbon foams in application of energy storage.
        4,000원
        10.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        β-Ga2O3 has become the focus of considerable attention as an ultra-wide bandgap semiconductor following the successful development of bulk single crystals using the melt growth method. Accordingly, homoepitaxy studies, where the interface between the substrate and the epilayer is not problematic, have become mainstream and many results have been published. However, because the cost of homo-substrates is high, research is still mainly at the laboratory level and has not yet been scaled up to commercialization. To overcome this problem, many researchers are trying to grow high quality Ga2O3 epilayers on hetero-substrates. We used diluted SiH4 gas to control the doping concentration during the heteroepitaxial growth of β-Ga2O3 on c-plane sapphire using metal organic chemical vapor deposition (MOCVD). Despite the high level of defect density inside the grown β-Ga2O3 epilayer due to the aggregation of random rotated domains, the carrier concentration could be controlled from 1 × 1019 to 1 × 1016 cm-3 by diluting the SiH4 gas concentration. This study indicates that β-Ga2O3 hetero-epitaxy has similar potential to homo-epitaxy and is expected to accelerate the commercialization of β-Ga2O3 applications with the advantage of low substrate cost.
        4,000원
        11.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Lead-free perovskite ceramics, which have excellent energy storage capabilities, are attracting attention owing to their high power density and rapid charge-discharge speed. Given that the energy-storage properties of perovskite ceramic capacitors are significantly improved by doping with various elements, modifying their chemical compositions is a fundamental strategy. This study investigated the effect of Zn doping on the microstructure and energy storage performance of potassium sodium niobate (KNN)-based ceramics. Two types of powders and their corresponding ceramics with compositions of (1-x)(K,Na)NbO3-xBi(Ni2/3Ta1/3)O3 (KNN-BNT) and (1-x)(K,Na)NbO3-xBi(Ni1/3Zn1/3Ta1/3) O3 (KNN-BNZT) were prepared via solid-state reactions. The results indicate that Zn doping retards grain growth, resulting in smaller grain sizes in Zn-doped KNN-BNZT than in KNN-BNT ceramics. Moreover, the Zn-doped KNNBNZT ceramics exhibited superior energy storage density and efficiency across all x values. Notably, 0.9KNN-0.1BNZT ceramics demonstrate an energy storage density and efficiency of 0.24 J/cm3 and 96%, respectively. These ceramics also exhibited excellent temperature and frequency stability. This study provides valuable insights into the design of KNNbased ceramic capacitors with enhanced energy storage capabilities through doping strategies.
        4,000원
        12.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, Ni-Y2O3 powder was prepared by alloying recomposition oxidation sintering (AROS), solution combustion synthesis (SCS), and conventional mechanical alloying (MA). The microstructure and mechanical properties of the alloys were investigated by spark plasma sintering (SPS). Among the Ni-Y2O3 powders synthesized by the three methods, the AROS powder had approximately 5 nm of Y2O3 crystals uniformly distributed within the Ni particles, whereas the SCS powder contained a mixture of Ni and Y2O3 nanoparticles, and the MA powder formed small Y2O3 crystals on the surface of large Ni particles by milling the mixture of Ni and Y2O3. The average grain size of Y2O3 in the sintered alloys was approximately 15 nm, with the AROS sinter having the smallest, followed by the SCS sinter at 18 nm, and the MA sinter at 22 nm. The yield strength (YS) of the SCS- and MA-sintered alloys were 1511 and 1688 MPa, respectively, which are lower than the YS value of 1697 MPa for the AROS-sintered alloys. The AROS alloy exhibited improved strength compared to the alloys fabricated by SCS and conventional MA methods, primarily because of the increased strengthening from the finer Y2O3 particles and Ni grains.
        4,000원
        13.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        UV and O3 are materials used in the water treatment process, and many studies have been reported to remove organic matters, contaminants, and microorganisms. In this study, we were investigated effects of Chirnomidae (Chironomus flaviplumus, Chironomus riparius), which are contamination indicator species to exposure UV and O3 for the survival rate, body color change and gene expression response. The survival rate of C. flaviplumus exposed to UV decreased to about 70% after 24 hours, and C. riparius about 50%. There was no change in the survival rate of C. flaviplumus exposed to O3, and C. riparius decreased to 95% after 10 minutes of exposure, but there was no change during the subsequent exposure time. In addition, UV and O3 exposure to the two species in body color faded in a time-dependent. In the HSP70 gene expression, C. riparius showed an increase in expression after UV exposure compared to the control group, and a significant difference was shown 12 hours after exposure (P<0.05). C. flaviplumus exposed to O3 showed a relatively low expression compared to the control group, and showed a significant difference at 10 minutes and 1 hour after exposure (P<0.05). These results reported the ecotoxicological effects on Chironomidae according to UV and O3 exposure. Therefore, the results of this study can be used as basic data to understand the effects of UV and O3, which are disinfectants used in water treatment plants, on Chirnomidae entering plants. Key words: Chironomus flaviplumus, Chironomus riparius, UV, O3, acute toxicity, survival
        4,000원
        14.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a THC removal system was developed using an oxidation catalyst to solve the problems of the existing thermal oxidation methods, RTO and RCO. In addition, this system was applied to industrial sites to confirm the VOCs removal efficiency. As a result of testing to remove THC and VOCs by applying the reaction system for THC removal in industrial sites, the THC removal efficiency range is between 99.5% and 99.9%. The treatment efficiency of individual VOCs treated through this system was the lowest at 79.0% for methylethylketone and the highest at 91.3% for acetaldehyde, and the average treatment efficiency was about 85.4%. From these numbers, the performance was superior to the existing RTO and RCO systems that showed THC removal performance. This is due to the fact that the oxidation reaction of the oxidation catalyst is a very fast catalyst surface reaction, and the characteristics of the catalytic oxidation reaction are complete oxidation and oxidation reaction under rarefied conditions. In this study, the catalyst role in the reaction system for THC removal is to process THC simultaneously with the system heat source. This is believed to be because the reaction of the oxidation catalyst is a strongly exothermic reaction and can sufficiently provide the amount of heat necessary for the system. At the same time, an oxidation reaction that breaks the bonds of the THC component also occurs. This reaction is a strong exothermic reaction, which can help the system maintain a high temperature during the reaction, and is considered an effective system for processing high concentrations of THC in actual industrial sites where THC concentrations are high, as in this study.
        4,000원
        15.
        2023.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effects of La3+ substitution for Sr2+-site on the crystal structure and the dielectric properties of (Ba0.7Sr0.3-3x/2Lax) (Ti0.9Zr0.1)O3 (BSLTZ) (0.005 ≤ x ≤ 0.02) ceramics were investigated. The structural characteristics of the BSLTZ ceramics were quantitatively evaluated using the Rietveld refinement method from X-ray diffraction (XRD) data. For the specimens sintered at 1,550 °C for 6 h, a single phase with a perovskite structure and homogeneous microstructure were observed for the entire range of compositions. With increasing La3+ substitution (x), the unit cell volume decreased because the ionic size of La3+ (1.36 Å) ions is smaller than that of Sr2+ (1.44 Å) ions. With increasing La3+ substitution (x), the tetragonal phase fraction increased due to the A-site cation size mismatch effect. Dielectric constant (εr) increased with the La3+ substitution (x) due to the increase in tetragonality (c/a) and the average B-site bond valence of the ABO3 perovskite. The BSLTZ ceramics showed a higher dielectric loss due to the smaller grain size than that of (Ba0.7Sr0.3)(Ti0.9Zr0.1)O3 ceramics. BSLTZ (x = 0.02) ceramics met the X7R specification proposed by the Electronic Industries Association (EIA).
        4,000원
        1 2 3 4 5