검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, considerable attention has been given to nickel-based superalloys used in additive manufacturing. However, additive manufacturing is limited by a slow build rate in obtaining optimal densities. In this study, optimal volumetric energy density (VED) was calculated using optimal process parameters of IN718 provided by additive manufacturing of laser powder-bed fusion. The laser power and scan speed were controlled using the same ratio to maintain the optimal VED and achieve a fast build rate. Cube samples were manufactured using seven process parameters, including an optimal process parameter. Analysis was conducted based on changes in density and melt-pool morphology. At a low laser power and scan speed, the energy applied to the powder bed was proportional to and not . At a high laser power and scan speed, a curved track was formed due to Plateau-Rayleigh instability. However, a wide melt-pool shape and continuous track were formed, which did not significantly affect the density. We were able to verify the validity of the VED formula and succeeded in achieving a 75% higher build rate than that of the optimal parameter, with a slight decrease in density and hardness.
        4,000원
        2.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A smart tuned mass damper (TMD) was developed to provide better control performance than a passive TMD for reduction of earthquake induced-responses. Because a passive TMD was developed decades ago, optimal design methods for structural parameters of a TMD, such as damping constant and stiffness, have been developed already. However, studies of optimal design method for structural parameters of a smart TMD were little performed to date. Therefore, parameter studies of structural properties of a smart TMD were conducted in this paper to develop optimal design method of a smart TMD under seismic excitation. A retractable-roof spatial structure was used as an example structure. Because dynamic characteristics of a retractable-roof spatial structure is changed based on opened or closed roof condition, control performance of smart TMD under off-tuning was investigated. Because mass ratio of TMD and smart TMD mainly affect control performance, variation of control performance due to mass ratio was investigated. Parameter studies of structural properties of a smart TMD was performed to find optimal damping constant and stiffness and it was compared with the results of optimal passive TMD design method. The design process developed in this study is expected to be used for preliminary design of a smart TMD for a retractable-roof spatial structure.
        4,000원
        3.
        2009.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A variety of statistical methods are applied to model and optimize responses, related to product or system's quality, in terms of control and noise factors at design and manufacturing stages. Most of them assume continuous response variables but, assessin
        4,000원
        4.
        2006.09 구독 인증기관 무료, 개인회원 유료
        In this study, numerical analysis of TMD to estimate optimal-design-parameter is investigated using actual excitation, and evaluated by comparing results of numerical analysis and optimal-design-parameter was devised by Soong. It assumed between 1~2 seconds the 1st mode natural period of an aged apartment which has 10~15 stories and then investigated optimal-design-parameter of actual excitation for evaluate optimal frequency ratio and damping ratio according to local site condition. At this time mass ratio was 1% and range of tuned frequency ratio was 0.8Hz to 1.2Hz at intervals of 0.01Hz, and optimal damping ratio was 1% to 14% at intervals of 0.002%. It estimated Optimal-design-parameter was evaluated by numerical analysis according to peak and RMS displacement, acceleration respectively local site. And the result of evaluated respond performance parameter respectively a period was shown low numerical-value than optimal-design-parameter was devised by Soong what is more peak acceleration indicated performance difference of 20% over
        4,000원
        5.
        2004.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        There is boner process of stone manufacturing to become quality down of stone to consolidated micro crack appearance of stone surface and biotite by fire that is to be route process in stone surface by flame of LPG. And then, it is develop that stone surface process equipment by automation for the work method of boner process can be substitute work method by shotball blasting. To developement of equipment, There is to be down noise and dust. Acording to remove calamity growth hazardous substance in the work environment, there is to solve workplace avoidance factor. We have taken Taguchi's parameter design approch, specifically orthogonal array, and determined the optimal levels of stone surface through analysis of the experimental results using SIN ratio.
        4,300원
        6.
        2003.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A study to analyze and solve problems of a stone surface process experiment has presented in this paper. We have taken Taguchi's parameter design approach, specifically orthogonal array, and determined the optimal levels of the selected variables through analysis of the experimental results using S/N ratio.
        4,200원
        7.
        2001.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polyacetal resin is usually used to make molds, but it is difficult to achieve dimension accuracy during molding. Therefore it is usually necessary to cut the polyacetal resin after a molding process. Polyacetal resin is easily machining by standard machine tool. Acetal is also a thermal stable material which can be totted without coolant Another concern about the use of polyacetal resin is that it absorbs water easily, which also results in problems with dimension accuracy Therefore, in this study, the cutting resistance of water-absorbed polyacetal resin and its surface roughness after cutting in order to achieve the highest degree of accuracy in the cutting of polyacetal resin were investigated. Also, The Robust Design method uses a mathematical tool called orthogonal arrays to study a large number of decision variables with a small number of experiments. It also uses a new measure of quality, called signal-to-noise (S/N) ratio, to predict the quality from the customer's perspective. Thus, we have taken Taguchi's parameter design approach, specifically orthogonal array, and determined the optimal levels of the selected variables through analysis of the experimental results using S/N ratio.
        4,000원
        8.
        2000.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Robust Design method uses a mathematical tool called orthogonal arrays to study a large number of decision variables with a small number of experiments. It also uses a new measure of quality, called signal-to-noise (S/N) ratio, to predict the quality from the customer's perspective. Thus, the most economical product and process design from both manufacturing and customers' viewpoints can be accomplished at the smallest, affordable development cost. Many companies, big and small, high-tech and low-tech, have found the Robust Design method valuable in making high-quality products available to customers at a low competitive price while still maintaining an acceptable profit margin. A study to analyze and solve problems of a biochemical process experiment has presented in this paper. We have taken Taguchi's parameter design approach, specifically orthogonal array, and determined the optimal levels of the selected variables through analysis of the experimental results using S/N ratio.
        4,000원
        9.
        2000.05 구독 인증기관 무료, 개인회원 유료
        A study to analyze and solve problems of polyacetal resin cutting experiment has presented in this paper. We have taken Taguchi's parameter design approach, specifically orthogonal array, and determined the optimal levels of the selected variables through analysis of the experimental results using S/H ratio.
        4,000원
        10.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        하도홍수추적 방법에서 많이 사용되고 있는 Muskingum 방법의 가장 중요한 매개변수는 저류상수와 가중인자이다. Muskingum 방법은 상류 유입지점에서 하류 유출지점까지 측방유입량이 고려되지 않지만, 실제 유역에는 강우로 인하여 측방유입유량이 발생한다. 이로 인해 상하류 실측 자료를 이용하여 저류상수 및 가중인자를 산정하는 것이 매우 어려운 상황이다. 이에 본 연구는 HEC-RAS 1차원 부정류 해석모형을 이용한 수리학 적 홍수추적을 통해 측방유입유량이 제외된 상태에서의 하도에서 전파되는 유량을 산정하였고, 이를 이용하여 저류상수 및 가중인자를 산정하는 방법을 제시하였다. 이와 함께 저류상수가 유하시간과 관계있음을 감안하여 국내 하천기본계획 수립 시 사용되는 유하시간 경험 공식들을 저류상수로 적용한 결과를 비교 분석하였다. 마지막으로 유량이 고려된 유하시간 산정식을 개발하고, 유입량의 변화에 맞춰 유하시간을 업데이트하여 모의를 수행하는 방법을 제시하였다. 유량을 고려한 유하시간을 저류상수로 적용한 경우, 유량의 상승 및 하강 과정, 첨두 유량, 그리고 첨두 시간에 대해서 잘 모의하는 것으로 분석되었다.
        11.
        2006.07 KCI 등재 서비스 종료(열람 제한)
        강우로부터 유출현상은 고유적으로 비선형성이다. 더욱이 실제적으로 이와 같은 비선형성의 해석은 많은 어려움을 내포하고 있다. 또한, 부정류효과의 동적작용을 고려한 저류개념은 매개변수의 유역특성상 추정하기가 상당히 복잡하기 때문에 피해오고 있는 실정이다. 본 연구에서는 이와 같은 동적효과를 고려한 비선형의 저류함수에 대한 매개변수의 최적치를 얻고자 시도한다. 이를 위한 수치해법은 금강의 보청천유역의 관측치와 계산치의 오차를 최소로 하는 최소자승법에 의거 준