본 연구는 경상북도 안동시 북후면에 위치한 사과원에서 채집한 복숭아순나방(Grapholita molesta)의 새로운 알 기생봉을 형태 및 분자적 방 법으로 동정하여 보고한다. 기생봉의 촉각 및 날개 구조를 통해 명충알벌(Trichogramma chilonis)과 가장 유사하였으며, 이는 cytochrome oxidase I 염기서열 분석을 통해 뒷받침되었다.
농업생산생태계 내 경관의 구조와 구성은 해충과 천적을 비롯한 생물다양성을 결정하는 중요한 요소이다. 이 연구는 경남 거창군 80개 사과원 을 대상으로 경관 구조가 나비목 해충의 발생에 영향을 미칠 수 있는지를 조사하였다. 과수원의 지정학적 특징, 농약 사용패턴과 과원 관리 방법 등에 대한 정보는 설문 조사를 통해 추가로 분석하였다. 과수원 주변 경관 구조는 인공위성자료에 바탕하여 추출하였다. 복숭아순나방 발생량이 가장 많았고, 사과굴나방, 복숭아심식나방, 사과잎말이나방 순으로 발생하였다. 농가에서는 살균제와 살충제를 각 12.4회, 살비제는 2.4회 살포하였다. 대부분 사과원 주변 식생은 사과 또는 논이었으며, 자두, 복숭아, 포도 또는 폐과원이 있을 경우 복숭아순나방 밀도가 특히 높았다. 복숭아심식나방 역시 주변에 복숭아나 포도가 있을 경우 그 발생량이 더 높았다. 사과굴나방은 복숭아, 포도, 폐과원 그리고 대추가 있는 지역에서 발생량이 많았다. 이러한 결과는 농업 지역에서 경관 관리는 농촌 어메니티 개선뿐 아니라 병해충 관리의 차원에서 기능적 다양성을 추구하는 방향으로 진행되어야 한다는 점을 시사한다.
교미교란(mating disruption, MD) 기술이 사과에 피해를 주는 복숭아순나방(Grapholita molesta) 방제에 널리 사용되고 있다. 복숭아순 나방과 복숭아순나방붙이를 동시에 교미교란(simultaneous MD, SMD)하는 기술이 최근에 개발되었다. 본 연구는 이 SMD 기술을 현장에 접목하는 데 필요한 요인들을 결정하기 위해 수행되었다. SMD 처리 농도를 결정하기 위해 각 처리 지점에 10 mg의 성페로몬을 여러 가지 밀도로 사과나무에 처리하였다. 처리된 세 농도 가운데 두 나무마다 하나의 SMD 처리가 비교적 안정적으로 MD 효과를 유지하였다. 이러한 SMD 효과는 왁스 및 polyethylene 제형 모두에서 나타났다. 두 사과나무마다 하나의 SMD 처리 농도로 3월 말에 1회 처리한 경우 수확기까지 복숭아순 나방과 복숭아순나방붙이에 대해 효과적 교미교란을 유지시켰다. 인근 무처리 과수원에서 SMD 처리 과수원으로 이주하여 들어오는 교미된 암컷의 이입을 막기 위해 울타리 처리 기술이 적용되었다. 암컷 유인제를 개발하기 위해 6종류의 사과 과실 추출물에 포함된 화합물 가운데 terpinyl acetate (TA)가 선발되었다. 서로 다른 TA 농도 처리에서 0.05%가 성충 유인에 가장 효과적이었다. TA와 설탕을 혼합한 것을 암컷유살제(female attract-to-kill technique, FAKT)라 명명하였다. 사과 과수원 가장자리를 따라 6 m 간격으로 FAKT를 설치한 울타리 처리는 교 미된 암컷을 포획하였고, 이들은 난황형성과정을 진행하고 있는 난모세포를 지니고 있었다. FAKT가 가미된 SMD 처리는 높은 MD 효율을 유지하는 것은 물론이고 SMD 단독 처리에 비해 신초 피해를 현격하게 줄였다.
수확 후 해충방제가 국내 수요 농산물은 물론이고 검역 문제를 해결하기 위한 수출용 농산물에 대해서 요구되고 있다. 특별히 유기 농산물 또는 환경친화형 재배 농산물에 대해서 메틸브로마이드와 같은 화합물을 이용한 기존의 수확 후 처리기술은 의미를 잃게 되었다. 대체 기술로서 CATTS (환경조절열처리기술)라 명명된 물리적 처리기술이 개발되어 사과와 여러 핵과류 과실을 가해하는 곤충과 응애에 적용되고 있다. 본 연구는 국내 사과 수출을 위해 수입국에서 규제하는 복숭아순나방(Grapholita molesta)을 대상으로 CATTS 처리 조건을 결정하는 데 목표를 두었다. 이 해충에 CATTS를 적용하기 위해 사과 과실에 잔류하면서 열에 높은 내성을 보이는 발육시기를 분석하였다. 열처리 조건(44℃, 20분)에서 5령 유충이 가장 높은 내성을 보였다. 환경조건(15% CO2, 1% O2)에서 기기 내부 온도가 25℃에서 46℃까지 증가하는 시기를 CATTS 가열단계로 볼 때, 이 가열 속도가 빠를수록 CATTS 해충 방제 효과가 높았다. 또한 가열단계 후 CATTS 처리 시간이 길수록 CATTS 효율이 증가했다. 특히 가열단계에서 과실 내부온도가 44℃로 이르게 하는 것이 CATTS 효율을 높이는 데 결정적이었다. 이러한 조건들을 종합하여 CATTS표준 처리기술을 결정하였으며, 이 기술은 2,104 마리의 5령을 포함한 4,378 마리 복숭아순나방 유충 피해를 받은 사과에 대해서 100% 방제 효과를 나타냈다.
Insects in temperate climate zones are challenged to endure harsh temperature regimes and the absence of food resources during winter. Many insects overwinter in diapause at different sites. The overwintering sites differ according to the insect species. The study was conducted to investigate the overwintering sites between the two orchard systems for the Grapholita molesta larvae. Overwintering sites of Grapholita molesta were found different between apple grafting systems. More individuals favored the side branches and main bottom trunk as overwintering sites in big tree system (M26) and in dwarf grafting high density system (M9) respectively. There was no significant different between M9 and M26 cultivars in the relative proportion of larvae. However, significant differences were found in the interaction between the overwintering sites and the two M9 and M26 cultivar orchard systems. The natural mortality from the field was estimated as 22.1% and 18.3% from dwarfing, high density orchards and the big tree orchard systems respectively. This study provides valuable information and guidelines to understand the major overwintering sites within different orchard systems for scheduling management actions against spring adult moths population emergence.
Many insects overwinter in diapause in the temperate region. Winter diapause often terminates far yearly than our thought, eg. Many in December. After diapause termination, insect becomes in quiescence. The lower developmental threshold of overwintering Oriental fruit moth larvae is in the range of 7.5-8.4℃ depending on the geographic location. We have determined the developmental period of overwintering OFM larvae from the time series interval collection. Collections were made from mid Jan to late March at 10d interval. Collected larvae were held in a cold chamber at 6°C for 5 days, and then subjected at 20°C with 75% R.H., 16:8(L:D).hr. The developmental period from overwintering cocooned larvae to adults was longest in mid. January collections, became shorter after 31 Jan. collection, then gradually decreased until mid March. Cocooned larvae developmental period became shorter after 31 Jan. while that of pupae became shorter after 20 Feb. During this study, female ratio was not different to 0.5. Mortality of winter collected larvae to adults was 45% including 30% parasitism. Partial explanation of the insect development under the lower developmental threshold was discussed; limitation of linear model estimation, temperature data quality and physiological metabolism after diapause termination. From January to February, daily average temperature fluctuated but under the lower developmental threshold. However, daily maximum temperature became noticeably higher than the lower developmental threshold after 20 Jan. However, this result indicates that after late Jan, physiological state of OFM is altered.
A remote sensing pheromone trap called IT pheromone trap (Korean patent: 10-0982563) was applied to monitor overwintering population changes of the oriental fruit moth, Grapholita molesta, for three successive years in apple orchards. Males of the overwintering populations were attracted during April and May. However, the occurrence peak was delayed and extended to early June in 2010, at which the average spring temperature was significantly lower than the previous years. These overwintering populations could be monitored by the remote-sensing pheromone trap. When the remote-sensing pheromone traps were deployed to apple orchards of different provinces in Korea in 2010, the maximal overwintering populations of G. molesta were monitored at May in all areas. However, the population sizes monitored were significantly different among different localities. This study suggests a practical application of IT pheromone trap to monitor G. molesta in field conditions.
Mating disruption (MD) using synthetic sex pheromone lures has been used to control the Oriental fruit moth, Grapholita molesta (Busck), in apple orchards. In Korea, where several small apple orchards are clustered but independently managed, its efficacy has been suspected mainly due to immigration of any mated females from nearby untreated cultivating areas. This study developed an edge treatment technique to decrease any local MD-free zones in a specific MD-treated farm and to trap any immigrating mated females by installing MD lures and food traps around the apple farm with 10 meter intervals. The addition of the edge treatment to the MD significantly prevented leaf and fruit damages induced by G. molesta compared to MD only. Moreover, this study tried to optimize the MD control technique by determining frequency of MD application. It suggests two MD applications with the edge treatment at the end of March and at the early of July to be effective throughout the entire apple growing seasons.
Local and seasonal populations of the oriental fruit moth, Grapholita molesta , were monitored with sex pheromone trapping and RAPD (random amplified polymorphic DNA) molecular marker to analyze their movement in apple orchards. To detect their movements among farms, pheromone traps were placed at regions between apple farms (‘outside-farms’) as well as within-farms (‘inside-farms’). Four seasonal adult peaks were evident in apple-cultivating fields from April to October in both trappings of inside- or outside-farms. After overwintering generation, populations of inside-farms were significantly reduced with frequent insecticide applications, compared to populations of outside-farms. Within apple farms, G. molesta tended to be unevenly distributed because of significant sublocal preference. Active movements of local and seasonal populations of G. molesta were supported by gene flow analysis using RAPD marker. Monitoring data using sex pheromone and seasonal reduction in initial genetic differentiation detected in the overwintering populations suggest that there must be significant movement of G. molesta among different orchards in apple-cultivating areas.
Mitochondrial genome is inherited in maternal origin without recombination by mating and its specific regions have been used to monitor insect pest populations in agriculture. The oriental fruit moth, Grapholita molesta, is a serious pest on apple industry by its direct damage on fruits. This study reports a full sequence of mitochondrial genome of G. molesta. Sequence contigs were made by primary PCRs on conserved regions and subsequent PCRs to fill the gaps. Annotated genes were highly matched to the sequences of other lepidopteran species. However, a few positions of tRNA genes on the genome were different to other mitochondrial genomes.
Local and seasonal populations of the oriental fruit moth, Grapholita molesta, were monitored with sex pheromone trapping and RAPD (random amplified polymorphic DNA) molecular marker to analyze their movement in apple orchards. To detect their movements among farms, pheromone traps were placed at regions between apple farms ('outside-farms') as well as within-farms ('inside-farms'). Four seasonal adult peaks were evident in apple-cultivating fields from April to October in both trappings of inside- or outside-farms. After overwintering generation, populations of inside-farms were significantly reduced with frequent insecticide applications, compared to populations of outside-farms. Within apple farms, G. molesta tended to be unevenly distributed because of significant sublocal preference. Active movements of local and seasonal populations of G. molesta were supported by gene flow analysis using RAPD marker. Monitoring data using sex pheromone and seasonal reduction in initial genetic differentiation detected in the overwintering populations suggest that there must be significant movement of G. molesta among different orchards in apple-cultivating areas.
An unidentified moth was captured in sex pheromone traps of the oriental fruit moth, Grapholita molesta, especially at spring season in apple orchards and their vicinity. Though the captured males were similar in appearance to G. molesta males, they were easily distinguished by a marked difference in body size. Their occurrence pattern was also similar to that of overwintering G. molesta population from April to May, at which more males were captured in the pheromone traps installed in the vicinity of apple orchards than within apple orchards. After May, they were no longer captured in the pheromone traps. To investigate any larval damage due to this unidentified moth, molecular markers needed to be developed. Four PCR-RFLP markers originated from cytochrome b region of mitochondrial DNA could distinguish this unidentified moth from G. molesta.
A wax-typed pheromone dispenser has been developed and applied to control outbreak of the oriental fruit moth, Grapholita molesta, in apple orchard. To optimize its application technique, this study analyzed effect of different amounts of the pheromone dispenser on mating disruption (‘MD’) of G. molesta. Different pheromone dispenser amounts significantly influenced the MD effect assessed by cumulative male adult catches monitored respectively by sticky delta trap and food trap, and resulted in differential damage on host plants. In a field test during entire growing season, a standard amount (120 g per 0.117 ㏊) of wax-typed pheromone dispenser was proved to be effective to suppress outbreak of G. molesta adults and to prevent host plant damage as much as a current commercial MD product (Isomate<SUP>Ⓡ</SUP>). This study also demonstrated an effectiveness of deployment of food trap barriers around MD-treated area to prevent immigration of mated females from outside untreated areas. These results indicate that the wax-typed pheromone dispenser can be applied to control field G. molesta populations and its co-application with food trap barriers would be optimal to maximize MD efficacy.
Spring phenology of the oriental fruit moth, Grapholita molesta, was monitored using sex pheromone traps in apple cultivating areas. Their occurrence was earlier in southern areas and their population sizes were significantly different among orchards even in a local cultivating zone. The overwintering populations appeared to move between local orchards, based on the fact that monitoring data obtained at the sites between orchards were similar to those of nearby orchards. However, within orchards, these adult movements appeared to decrease and showed skewed occurrences at the side of upwind direction or close to neighboring orchards. At initial occurrence peak (April 20-25), the overwintering populations of the different localities were collected and analyzed in their genetic distances. PCR-RAPD analysis indicated that there were significant genetic differences among the overwintering populations of G. molesta. This genetic differentiation of overwinterin populations may be due to genetic bottleneck following differential selection pressures against the subpopulations of G. molesta during winter on the basis of the RAPD analysis that each early spring population was significantly different to its previous fall population in the same locality.
This study demonstrates a variability in efficacy of mating disruption against the oriental fruit moth, Grapholita molesta, populations infesting apples cultivated in differential environmental conditions. Throughout the growing seasons, trap catches of G. molesta male moths and damaged leaf and fruit were examined to evaluate the efficacy of a commercialized mating disruptor. Treatment of the mating disruptor significantly reduced the trap catches of male moth in treated plot, compared to those of the untreated plot. This reduced trap catches were significantly correlated with leaf and fruit damage. Moreover, the highest host damage occurred in June just after the highest overwintering adult peaks in both plots. The treatment of mating disruptors in Chungsong effectively disrupted the overwintering population in April and May, resulting in no noticeable host damage during the following growing seasons. However, there was a marked difference in host damage between two plots, especially in late seasons. Variation in the efficacy of mating disruption technology in terms of host damage appeared to be related with nearby pheromone-untreated orchards, which may result in the immigration of gravid females.
Oriental fruit moth, Grapholita molesta, is a serious pest on apples. To control this pest in an environmentally friendly method, mating disruption strategy using sex pheromone has been developed. Area-wide application of mating disruption has been needed to be effective, with little understanding on how much size of apple cultivating area should be treated in one time application of the mating disruption technique. On this matter, we needed to determine a minimal mating active zone of G. molesta that should be applied with mating disrupters to be effective. Molecular markers to discriminate a specific population should be developed to trace population migration for reproductive behaviors. Here we developed two effective molecular markers using random amplified polymorphic DNA (RAPD) technique. Different field populations of G. molesta, based on locations and seasons, were analyzed with these markers. In a specific location, G. molesta populations varied in genetic composition with different seasons. Different local populations showed differential variation according to their relative distances among apple orchards. In overall, genetic variation among different populations became lessen with progression of seasons.
This survey was conducted from 1992 to 2005 in the major apple producing districts in southern part of South Korea including 4~8 cities, to know the occurrence and damage level of two major pests, Carposina sasakii and Grapholita molesta that attack apple fruit. The fruit damage by G. molesta during the harvest period ranged from 0.02 to 1.64%. A tendency of higher damage of G. molesta was observed after 1997 compared with the previous years. The other hand, the fruit damage by C. sasakii was 0.02 to 1.30%, and the damage level was very low with fruit damage of < 0.3% except 1998. The orchard infested with G. molesta was 13 to 71%, while 12 to 57% with C. sasakii. The rates of orchards where fruit damage by G. molesta was found were higher than those by C. sasakii after 1997. The tendency of fruit damage rates in the orchard where the most fruit damage was found was same with the trend of orchard rates infested with the pests. The maximum damage rate by G. molesta was 20.0% in 2005, while 4.5% by C. sasakii in 1998. The damaged shoot rates by the first generation G. molesta was 0.1~8.1%, and it had a positive correlation with the rates of fruit damage during the harvest period. Consequently, it is concluded that G. molesta is dominant species compared with C. sasakii in commercial apple orchards recently.
Three active components (Z8-12:Ac, E8-12:Ac, and Z8-12:OH) are known in sex pheromone of the oriental fruit moth, Grapholita molesta, and have been commercially available to apply for population monitoring and mating disruption. However, there have been variation among commercial products in pheromone composition and amount impregnated in each pheromone releaser. This study was performed to optimize factors influencing on pheromone monitoring of G. molesta by analyzing pheromone composition/amount, effective period of releaser, and trap type/placement in apple trees. High purity of Z8-12:Ac component was effective to attract males, in which 96% or more of cis acetate isomer component appeared to be optimal composition. Pheromone amounts (0.01-1 ㎍) impregnated in each rubber dispenser did not give significant effect on monitoring during 90 days from June to August. "Delta" trap was much more efficient than "cone" trap to collect males. Trap installation was another factor, in which placing traps at canopy level was much efficient than at trunk or ground levels. Pheromone trap monitoring with these optimal factors indicated three to four adult peaks from June to September in addition to high overwintering population from April to May in pesticide-applied orchards in Andong, Korea.
This study was performed to estimate the efficacy of three commercial mating disruptors for the control of oriental fruit moth, Grapholita molesta (Busck), using a food-baited trap to collect field females. Mated female ratios estimated in the mating disruptor-treated areas were compared with the estimates of male trap captures, and both estimates were evaluated on the basis of crop damage measured by shoot tip damage caused by G. molesta. Both males and females were attracted to the food trap-baited with terpinyl acetate in apple orchard. Spermatophore of G. molesta was similar to female bursa copulatrix in size. Though there was more than 95% reduction in male trap captures indicating significant mating disruption, significant crop damage occurred on apple leaf buds, in which more than 35% of captured females were mated. This study demonstrates that assessment of the mated females would be more reasonable to represent the efficacy of mating disruptor(s) than the assessment of the male captures in G. molesta.
Three sex pheromone components (cis-8-dodecenyl acetate (Z12Ac), trans-8-dodecenyl acetate (E12Ac), cis-8-dodecenol (Z12OH)) of the Oriental fruit moth, Grapholita molesta, were chemically synthesized. Especially to increase the composition of cis-stereoisomer, a triple bond intermediate was hydrogenated at -20℃ with catalytic Pd/BaSO₄. The resulting product consisted of the acetates with a stereoisomer ratio in 92:8 (Z:E). The biological activity of the synthesized pheromone compounds was analyzed both in male responses and orientation disruption. The indoor pheromone effect was determined by male flight behavior showing wing movement in response to lure. Different mixtures of the synthetic pheromone components were prepared by mixing acetate and alcohol components in 100:0, 99:1, and 90:10 (g/g) and tested with a comparison of a standard commercial pheromone lure. The highest pheromone effect was observed in only acetate mixture (100:0) and the effect was reduced with the addition of the alcohol component. This indoor pheromone effect could be observed in field monitoring trial, in which 100:0 mixture showed the highest trap catches. Orientation disruption assay was conducted indoor by using a cage, in which the center had a commercial lure on sticky plate and the four candidates were placed at 6 ㎝ away from the central lure on each of four directions. Test males were released to the arena during overnight (12 h) and then the caught males on the sticky plate were counted. The synthesized pheromone as well as the commercial pheromone showed 100% orientation disruption. However, the orientation disruption effect was reduced with decrease in the number of the surrounding disrupting pheromone baits. These results clearly suggest that the synthesized sex pheromone of G. molesta is biologically active and can be used for field mating disruption.