검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 68

        1.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Dynamic responses of nuclear power plant structure subjected to earthquake loads should be carefully investigated for safety. Because nuclear power plant structure are usually constructed by material of reinforced concrete, the aging deterioration of R.C. have no small effect on structural behavior of nuclear power plant structure. Therefore, aging deterioration of R.C. nuclear power plant structure should be considered for exact prediction of seismic responses of the structure. In this study, a machine learning model for seismic response prediction of nuclear power plant structure was developed by considering aging deterioration. The OPR-1000 was selected as an example structure for numerical simulation. The OPR-1000 was originally designated as the Korean Standard Nuclear Power Plant (KSNP), and was re-designated as the OPR-1000 in 2005 for foreign sales. 500 artificial ground motions were generated based on site characteristics of Korea. Elastic modulus, damping ratio, poisson’s ratio and density were selected to consider material property variation due to aging deterioration. Six machine learning algorithms such as, Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Artificial Neural Networks (ANN), eXtreme Gradient Boosting (XGBoost), were used t o construct seispic response prediction model. 13 intensity measures and 4 material properties were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks present good prediction performance considering aging deterioration.
        4,000원
        2.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 중국 기악연주 전공 대학생의 전공만족도와 전공선택 동기가 학습몰입과 연주성취도에 미치는 영향을 살펴보고자 하는데 목적이 있 다. 이를 위해 2024년 3월 20일부터 2024년 4월 10일까지 중국 산시성 지역에서 기악연주를 전공하고 있는 대학생 1,153명을 통해 설문지를 수 집하였다. 수집된 설문지는 SPSS 23.0 통계 프로그램을 사용하여 기술 통계 분석, 단일표본 t -검증, 일원 배치 분산분석, Pearson 상관분석 및 중다회귀분석을 수행하였다. 이를 통해 기악연주 전공 대학생의 전공만 족도를 높일 수 있는 다양한 교수법과 프로그램을 제공하는데 필요한 기 초정보를 제공하고자 한다. 또한 중국 기악연주 전공 대학생의 교육의 질을 보다 향상시킬 수 있는 바람직한 방향 제시에 필요한 기초자료를 제공하는데에도 도움을 주고자 한다.
        6,000원
        3.
        2024.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Existing reinforced concrete (RC) building frames constructed before the seismic design was applied have seismically deficient structural details, and buildings with such structural details show brittle behavior that is destroyed early due to low shear performance. Various reinforcement systems, such as fiber-reinforced polymer (FRP) jacketing systems, are being studied to reinforce the seismically deficient RC frames. Due to the step-by-step modeling and interpretation process, existing seismic performance assessment and reinforcement design of buildings consume an enormous amount of workforce and time. Various machine learning (ML) models were developed using input and output datasets for seismic loads and reinforcement details built through the finite element (FE) model developed in previous studies to overcome these shortcomings. To assess the performance of the seismic performance prediction models developed in this study, the mean squared error (MSE), R-square (R2), and residual of each model were compared. Overall, the applied ML was found to rapidly and effectively predict the seismic performance of buildings according to changes in load and reinforcement details without overfitting. In addition, the best-fit model for each seismic performance class was selected by analyzing the performance by class of the ML models.
        4,200원
        4.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        New motor development requires high-speed load testing using dynamo equipment to calculate the efficiency of the motor. Abnormal noise and vibration may occur in the test equipment rotating at high speed due to misalignment of the connecting shaft or looseness of the fixation, which may lead to safety accidents. In this study, three single-axis vibration sensors for X, Y, and Z axes were attached on the surface of the test motor to measure the vibration value of vibration. Analog data collected from these sensors was used in classification models for anomaly detection. Since the classification accuracy was around only 93%, commonly used hyperparameter optimization techniques such as Grid search, Random search, and Bayesian Optimization were applied to increase accuracy. In addition, Response Surface Method based on Design of Experiment was also used for hyperparameter optimization. However, it was found that there were limits to improving accuracy with these methods. The reason is that the sampling data from an analog signal does not reflect the patterns hidden in the signal. Therefore, in order to find pattern information of the sampling data, we obtained descriptive statistics such as mean, variance, skewness, kurtosis, and percentiles of the analog data, and applied them to the classification models. Classification models using descriptive statistics showed excellent performance improvement. The developed model can be used as a monitoring system that detects abnormal conditions of the motor test.
        4,000원
        6.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 대학 교수학습센터에서 제공하는 학습지원 프로그램의 성과를 종합적으로 평가하기 위한 BSC(Balanced Score Card) 기반의 성과평가 모형을 개발하고 적용하는 데 있다. 문헌 연구를 통해 성과평 가의 이론적 배경을 조사하고, BSC 모형을 교육 분야에 맞게 수정하여 학습지원 프로그램에 적용 가능한 평가 체계를 설계하였다. 재무, 수요 자, 운영, 프로그램의 네 가지 관점에서 성과평가 지표를 설정하고, 이를 기반으로 대학의 다양한 학습지원 프로그램의 성과를 분석하였다. 분석 결과, 특정 프로그램들이 높은 성과를 보임을 확인하였으며, 동시에 개선 이 필요한 영역을 확인하였다. 개발된 BSC 기반 성과평가 모형은 대학 학습지원 프로그램의 다각도에서의 성과를 평가하는 데 유용하였으며, 프로그램의 강점과 개선점을 명확하게 확인할 수 있었다. 이 연구를 통 하여 대학 교수학습센터가 학습지원 프로그램의 질을 개선하고, 대학 교 육의 질적 향상에 기여하길 기대한다.
        6,100원
        7.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, there has been an increasing attempt to replace defect detection inspections in the manufacturing industry using deep learning techniques. However, obtaining substantial high-quality labeled data to enhance the performance of deep learning models entails economic and temporal constraints. As a solution for this problem, semi-supervised learning, using a limited amount of labeled data, has been gaining traction. This study assesses the effectiveness of semi-supervised learning in the defect detection process of manufacturing using the MixMatch algorithm. The MixMatch algorithm incorporates three dominant paradigms in the semi-supervised field: Consistency regularization, Entropy minimization, and Generic regularization. The performance of semi-supervised learning based on the MixMatch algorithm was compared with that of supervised learning using defect image data from the metal casting process. For the experiments, the ratio of labeled data was adjusted to 5%, 10%, 25%, and 50% of the total data. At a labeled data ratio of 5%, semi-supervised learning achieved a classification accuracy of 90.19%, outperforming supervised learning by approximately 22%p. At a 10% ratio, it surpassed supervised learning by around 8%p, achieving a 92.89% accuracy. These results demonstrate that semi-supervised learning can achieve significant outcomes even with a very limited amount of labeled data, suggesting its invaluable application in real-world research and industrial settings where labeled data is limited.
        4,000원
        8.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to determine the effect of simulation-based Korea advanced life support training on new nurses' knowledge, clinical performance ability, performer confidence, and learning satisfaction. Methods: This is a non-equivalent controlled pre-post quasi-experimental study. A simulation-based CPR training program was applied to 37 new nurses. Results: The experimental group scored lower on emergency management knowledge (83.65±7.61) than the control group (84.55±9.22), which was not significant (t=-4.46, p=.657). However, the clinical performance ability score was significantly higher in the experimental group (109.59±9.98) than in the control group (100.24±11.87) (t=3.581, p <.001). Performer confidence was significantly higher in the experimental group (23.43±3.29) than in the control group (19.90±3.85) (t=3.69, p〈.001). In addition, the learning satisfaction score of the experimental group (96.16±5.64) was significantly higher than the control group (88.42±11.13) (t=3.72, p< .001). Conclusion: This study confirmed that simulation training is an efficient way to improve new nurses' clinical performance ability, and performer confidence. Therefore, applying simulation training in scenarios can improve new nurses' work competence and contribute to improving the quality of patient care.
        4,300원
        10.
        2023.10 구독 인증기관·개인회원 무료
        A machine learning-based algorithms have used for constructing species distribution models (SDMs), but their performances depend on the selection of backgrounds. This study attempted to develop a noble method for selecting backgrounds in machine-learning SDMs. Two machine-learning based SDMs (MaxEnt, and Random Forest) were employed with an example species (Spodoptera litura), and different background selection methods (random sampling, biased sampling, and ensemble sampling by using CLIMEX) were tested with multiple performance metrics (TSS, Kappa, F1-score). As a result, the model with ensemble sampling predicted the widest occurrence areas with the highest performance, suggesting the potential application of the developed method for enhancing a machine-learning SDM.
        11.
        2023.07 구독 인증기관·개인회원 무료
        To successfully expand their business activities in overseas markets, small- and medium-sized enterprises (SMEs) must first acquire a thorough knowledge and understanding of prevailing environmental and market conditions. This study examines the crucial role that a learning orientation can play in the generation of relevant foreign market knowledge. It also investigates the impact of foreign market knowledge on strengthening internationalizing SMEs’ operational adjustment agility and market capitalizing agility, which in turn enhance firms’ international venture performance. Our empirical effort is based on data collected from 209 Nigerian industrial SMEs which internationalize their efforts. To test our research model and hypotheses we collected data by means of a survey conducted among Nigerian small- and medium-sized firms (i.e., employing 250 or less people) which internationalize their efforts and launch their products in B2B markets. The positive role of learning orientation, foreign market knowledge and organizational agility is confirmed by our results on driving international venture performance.
        12.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 2 016년부터 2 02 0년까지 내륙 관측소 중 안개 최다발 지역인 안동을 대상으로 XGBoost-DART 머신러닝 알고리즘을 이용하여 1 시간 후 안개 유무를 예측하였다. 기상자료, 농업관측자료, 추가 파생자료와 각 자료 를 오버 샘플링한 확장자료, 총 6개의 데이터 세트를 사용하였다. 목측으로 획득한 기상현상번호와 시정계 관측으로 측 정된 시정거리 자료를 각각 안개 유[1]무[0]로 이진 범주화하였다. 총 12개의 머신러닝 모델링 실험을 설계하였고, 안개 가 사회와 지역사회에 미치는 유해성을 고려하여 모델의 성능은 재현율과 AUC-ROC를 중심으로 평가하였다. 전체적으 로, 오버샘플링한 기상자료와 기상현상번호 기반의 예측 목표를 조합한 실험이 최고 성능을 보였다. 이 연구 결과는 머 신러닝 알고리즘을 활용한 안개 예측에 있어서, 목측으로 획득한 기상현상번호의 중요성을 암시한다.
        4,600원
        13.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        고성능 콘크리트(HPC) 압축강도는 추가적인 시멘트질 재료의 사용으로 인해 예측하기 어렵고, 개선된 예측 모델의 개발이 필수적 이다. 따라서, 본 연구의 목적은 배깅과 스태킹을 결합한 앙상블 기법을 사용하여 HPC 압축강도 예측 모델을 개발하는 것이다. 이 논 문의 핵심적 기여는 기존 앙상블 기법인 배깅과 스태킹을 통합하여 새로운 앙상블 기법을 제시하고, 단일 기계학습 모델의 문제점을 해결하여 모델 예측 성능을 높이고자 한다. 단일 기계학습법으로 비선형 회귀분석, 서포트 벡터 머신, 인공신경망, 가우시안 프로세스 회귀를 사용하고, 앙상블 기법으로 배깅, 스태킹을 이용하였다. 결과적으로 본 연구에서 제안된 모델이 단일 기계학습 모델, 배깅 및 스태킹 모델보다 높은 정확도를 보였다. 이는 대표적인 4가지 성능 지표 비교를 통해 확인하였고, 제안된 방법의 유효성을 검증하였다.
        4,000원
        14.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The prediction of algal bloom is an important field of study in algal bloom management, and chlorophyll-a concentration(Chl-a) is commonly used to represent the status of algal bloom. In, recent years advanced machine learning algorithms are increasingly used for the prediction of algal bloom. In this study, XGBoost(XGB), an ensemble machine learning algorithm, was used to develop a model to predict Chl-a in a reservoir. The daily observation of water quality data and climate data was used for the training and testing of the model. In the first step of the study, the input variables were clustered into two groups(low and high value groups) based on the observed value of water temperature(TEMP), total organic carbon concentration(TOC), total nitrogen concentration(TN) and total phosphorus concentration(TP). For each of the four water quality items, two XGB models were developed using only the data in each clustered group(Model 1). The results were compared to the prediction of an XGB model developed by using the entire data before clustering(Model 2). The model performance was evaluated using three indices including root mean squared error-observation standard deviation ratio(RSR). The model performance was improved using Model 1 for TEMP, TN, TP as the RSR of each model was 0.503, 0.477 and 0.493, respectively, while the RSR of Model 2 was 0.521. On the other hand, Model 2 shows better performance than Model 1 for TOC, where the RSR was 0.532. Explainable artificial intelligence(XAI) is an ongoing field of research in machine learning study. Shapley value analysis, a novel XAI algorithm, was also used for the quantitative interpretation of the XGB model performance developed in this study.
        4,000원
        15.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        벤처기업은 경쟁력 강화를 위한 내부 역량 구축에는 자원과 인력이 부족하기 때문에 공동연구, 네트워킹 등 외부와의 협력이 중요한 역할을 하고 있다. 이에 본 논문에서 는 벤처기업의 산학협력 경험이 조직학습역량과 혁신성과에 미치는 영향에 대하여 살펴보고 자 하였다. 지속적으로 확대되고 있는 정부 R&D 투자가 벤처기업과 대학의 협력을 촉진함 으로써 조직학습역량을 강화하고 혁신성과를 창출하는 메커니즘을 실증 분석하였으며 연구 결과는 다음과 같다. 첫째, 벤처기업의 산학협력 경험은 조직학습역량을 강화시키는 것으로 나타났다. 벤처기업은 대학과의 협력 및 자원 활용을 통해 내부 역량 강화에 중요한 역할을 하고 있음을 실증분석 한 것이다. 둘째, 벤처기업의 조직학습역량은 혁신성과에 유의한 영향 을 미쳤다. 조직학습역량이 높은 조직은 새로운 아이디어를 발굴하고 공유하는 문화를 가지 게 됨으로써 기업의 혁신성과 창출에도 긍정적인 역할을 하는 것으로 나타났다. 마지막으로 벤처기업 창업자의 배태조직(incubator organization)에 따른 산학협력과 조직학습역량을 분 석한 결과 중소(벤처)기업 및 개인 경험 기반의 창업 그룹이 대학과의 협력을 통해 조직학습 역량과 혁신성과 창출에 긍정적인 영향을 미치는 것으로 나타났다. 중소(벤처)기업과 개인 기반의 창업자는 대기업, 대학 및 연구소 창업자에 비해 상대적으로 더 높은 기술역량을 보 유한 대학과 협력함으로써 기업의 조직학습역량 강화에 도움을 받은 것으로 볼 수 있다. 본 연구를 통해 정부는 벤처기업의 R&D 성과를 극대화하기 위해 대학과 협력 유도하는 정책이 필요할 것이다. 물론 벤처기업과 대학에 나눠주기식 지원이 혁신성과를 저해하고 있다는 비 판도 존재하지만 정부 투자는 기술 축적, 고급인력 양성, 혁신 네트워크 강화 등 무형자원 확 충에 중요한 역할을 한다. 그렇기에 정부는 벤처기업의 성장을 위한 투자 전략성 강화를 위 해 정부의 권한을 적절하게 활용해야 할 것이다.
        7,000원
        16.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Algal bloom is an ongoing issue in the management of freshwater systems for drinking water supply, and the chlorophyll-a concentration is commonly used to represent the status of algal bloom. Thus, the prediction of chlorophyll-a concentration is essential for the proper management of water quality. However, the chlorophyll-a concentration is affected by various water quality and environmental factors, so the prediction of its concentration is not an easy task. In recent years, many advanced machine learning algorithms have increasingly been used for the development of surrogate models to prediction the chlorophyll-a concentration in freshwater systems such as rivers or reservoirs. This study used a light gradient boosting machine(LightGBM), a gradient boosting decision tree algorithm, to develop an ensemble machine learning model to predict chlorophyll-a concentration. The field water quality data observed at Daecheong Lake, obtained from the real-time water information system in Korea, were used for the development of the model. The data include temperature, pH, electric conductivity, dissolved oxygen, total organic carbon, total nitrogen, total phosphorus, and chlorophyll-a. First, a LightGBM model was developed to predict the chlorophyll-a concentration by using the other seven items as independent input variables. Second, the time-lagged values of all the input variables were added as input variables to understand the effect of time lag of input variables on model performance. The time lag (i) ranges from 1 to 50 days. The model performance was evaluated using three indices, root mean squared error-observation standard deviation ration (RSR), Nash-Sutcliffe coefficient of efficiency (NSE) and mean absolute error (MAE). The model showed the best performance by adding a dataset with a one-day time lag (i=1) where RSR, NSE, and MAE were 0.359, 0.871 and 1.510, respectively. The improvement of model performance was observed when a dataset with a time lag up of about 15 days (i=15) was added.
        4,000원
        18.
        2021.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, transfer learning techniques with a base convolutional neural network (CNN) model have widely gained acceptance in early detection and classification of crop diseases to increase agricultural productivity with reducing disease spread. The transfer learning techniques based classifiers generally achieve over 90% of classification accuracy for crop diseases using dataset of crop leaf images (e.g., PlantVillage dataset), but they have ability to classify only the pre-trained diseases. This paper provides with an evaluation scheme on selecting an effective base CNN model for crop disease transfer learning with regard to the accuracy of trained target crops as well as of untrained target crops. First, we present transfer learning models called CDC (crop disease classification) architecture including widely used base (pre-trained) CNN models. We evaluate each performance of seven base CNN models for four untrained crops. The results of performance evaluation show that the DenseNet201 is one of the best base CNN models.
        4,000원
        19.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        MRI는 연부조직에 대한 고해상도의 영상을 제공하며 진단적 가치가 매우 높은 영상 검사이며, 디지털 데이터를 이용하여 딥러닝 기술을 통해 컴퓨터 보조 진단 역할을 수행할 수 있다. 본 연구는 딥러닝 기반 YOLOv3를 이용하여 뇌종양 분류 성능을 확인해 보고자 한다. 253장의 오픈 MRI 영상을 이용하여 딥러닝 학습을 진행하고 학습 평가지표는 평균손실(average loss)와 region 82와 region 94를 사용하였으며, 뇌종양 분류 모델 검증을 위해 학습에 사용되지 않은 영상을 이용하여 검출 성능을 평가하였다. 평균손실은 2248 epochs 시 0.1107, region 82와 region 94의 24079 반복학습 시 average IoU, class, .5R, .75R은 각각 0.89와 0.81, 1.00과 1.00, 1.00과 1.00, 1.00과 1.00의 결과값을 도출하였다. 뇌종양 분류 모델 검증 결과 정상 뇌와 뇌종양 각각 95.00%, 75.36%의 정확도로 분류할 수 있었다. 본 연구 결과를 통해 MRI 영상을 활용한 딥러닝 연구 및 임상에 기초자료로 사용될 것이라 사료된다.
        4,000원
        20.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A smart tuned mass damper (TMD) is widely studied for seismic response reduction of various structures. Control algorithm is the most important factor for control performance of a smart TMD. This study used a Deep Deterministic Policy Gradient (DDPG) among reinforcement learning techniques to develop a control algorithm for a smart TMD. A magnetorheological (MR) damper was used to make the smart TMD. A single mass model with the smart TMD was employed to make a reinforcement learning environment. Time history analysis simulations of the example structure subject to artificial seismic load were performed in the reinforcement learning process. Critic of policy network and actor of value network for DDPG agent were constructed. The action of DDPG agent was selected as the command voltage sent to the MR damper. Reward for the DDPG action was calculated by using displacement and velocity responses of the main mass. Groundhook control algorithm was used as a comparative control algorithm. After 10,000 episode training of the DDPG agent model with proper hyper-parameters, the semi-active control algorithm for control of seismic responses of the example structure with the smart TMD was developed. The simulation results presented that the developed DDPG model can provide effective control algorithms for smart TMD for reduction of seismic responses.
        4,000원
        1 2 3 4