검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 32

        1.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The evolvement in the microstructure and electrical properties of PAN-based carbon fibers during high-temperature carbonization were investigated. The study showed that as the heat treatment temperature increases, the change of carbon fiber resistivity around 1100 °C can be divided into two stages. In the first stage, the carbon content of the fiber increased rapidly, and small molecules such as nitrogen were gradually released to form a turbostratic of carbon crystal structure. The resistivity dropped rapidly from 3.19 × 10− 5 Ω·m to 2.12 × 10− 5 Ω·m. In the second stage, the carbon microcrystalline structure gradually became regular, and the electron movement area gradually became larger. At this time, the resistivity further decreases, from 2.12 × 10− 5 Ω·m to 1.59 × 10− 5 Ω·m. During carbonization, the tensile strength of carbon fiber first increased and then decreased. This is because the irregular and disordered graphite structure is formed first. As the temperature rose, the graphite layer spacing decreased and the grain thickness gradually increases. The modulus also gradually increased.
        4,000원
        2.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        By polymerizing acrylonitrile in the presence of ammonium persulfate as an initiator and Pterocladia capillacea-activated carbon (P-AC) as a filler, a composite material polyacrylonitrile/Pterocladia capillacea-activated carbon (PAN/P- AC) was developed. By reacting hydroxylamine with the composite's nitrile groups, the prepared composite was functionalized by amidoximation. FTIR spectrometry, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Brunauer–Emmett–Teller (BET) analysis were all applied to thoroughly characterize the fabricated adsorbent. For the treatment of Cr(VI) ions from synthetic solutions, the adsorption properties of amidoximated polyacrylonitrile/Pterocladia capillacea-activated carbon (PAO/P-AC) were investigated. The pH effect, uptake kinetics, adsorption isotherms, and thermodynamics studies were used to characterize adsorption properties. As a kinetic model analysis, the data confirmed that the pseudo-second-order rate equation matched well the adsorption process. With coefficients of determination (R2) of 0.9998, the Tempkin isotherm model had the lowest error, suggesting that it is the best fitted model to describe this adsorption mechanism. Thermodynamic parameters demonstrated that Cr(VI) adsorption was endothermic.
        6,000원
        3.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polyacrylonitrile (PAN)-based carbon fibers (CFs) and their composites, CF-reinforced plastics, have garnered significant interest as promising structural materials owing to their excellent properties and lightweight. Therefore, various processing technologies for fabricating these advanced materials using thermal energy have been intensively investigated and developed. In most cases, these thermal energy-based processes (heat treatment) are energy and time consuming due to the inefficient energy transfer from the source to materials. Meanwhile, advanced processing technologies that directly transfer energy to materials, such as radiation processing, have been developed and applied in several industrial sectors since the 1960s. Herein, general aspects of radiation processing and several key parameters for electron-beam (e-beam) processing are introduced, followed by a review of our previous studies pertaining to the preparation of low-cost CFs using specific and textile-grade PAN fibers and improvements in the mechanical and thermal properties of CF-reinforced thermoplastics afforded by e-beam irradiation. Radiation processing using e-beam irradiation is anticipated to be a promising method for fabricating advanced carbon materials and their composites.
        5,100원
        5.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we developed a facile and template-free strategy for the preparation of activated porous carbon beads (APCBs) from polyacrylonitrile. The chemical activation with KOH was found to enhance the pore properties, such as specific surface area (SSA), pore volume, and pore area. The APCBs exhibited a large SSA of 1147.99 m2/g and a pore area of 131.73 m2/g. The APCB-based electrodes showed a good specific capacitance of 112 F/g at 1 A/g in a 6 M KOH electrolyte, and excellent capacitance retention of 100% at a current density of 5 A/g after 1000 cycles. Therefore, the APCBs prepared in this study can be applied as electrode materials for electric double-layer capacitors.
        4,000원
        6.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study demonstrates that low processing rate for producing polyacrylonitrile (PAN)-based carbon fiber is a critical to obtain a homogeneous radial microstructure with high resistance to oxidation, thereby resulting in their improved mechanical strength. The dry-jet wet spun PAN organic fibers were processed (e.g., stabilized and then carbonized) utilizing two different rates; one is 1.6 times longer than the other. The effect of processing rate on the microstructural evolutions of carbon fibers was analyzed by scanning electron microscopy after slow etching in air, as well as Raman mapping after graphitization. The rapidly processed fiber exhibited the multilayered radial structure, which is caused by the radial direction stretching of the extrusion in the spinning. In case of the slowly processed fiber, the layered radial structure formed in the spinning process was changed into a more homogeneous radial microstructure. The slowly processed fibers showed higher oxidation resistance, higher mechanical properties, and higher crystallinity than the rapidly processed one. Raman mapping confirmed that the microstructure developed during spinning was sustained even though fiber was thermally treated up to 2800 °C.
        4,000원
        7.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        가속화되는 산업화로 인해 중금속 이온의 침출이 환경문제로 떠오르고 있다. 수질 정화를 위한 몇 가지 방법 중 기능성 고분자 섬유를 이용한 흡착은 효율적이며 경제적이라는 장점이 있다. 특히, 폴리아크릴로나이트릴(polyacrylonitrile, PAN)은 금속 이온을 흡착할 수 있는 작용기가 많아 관심을 끌고 있다. PAN은 쉽게 전기방사를 통해 고분자 나노 섬유화될 수 있으며 높은 표면적을 가질 수 있다. 본 총설에서 다룰 복합 PAN 섬유는 폐수 처리를 위한 또 다른 유형의 고분자이다.
        4,000원
        8.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Milled carbon fiber (mCF) was prepared by a ball milling process, and X-ray diffraction (XRD) diffractograms were obtained by a 2θ continuous scanning analysis to study mCF crystallinity as a function of milling time. The raw material for the mCF was polyacrylonitrile- based carbon fiber (T700). As the milling time increased, the mean particle size of the mCF consistently decreased, reaching 1.826 μm at a milling time of 18 h. The XRD analysis showed that, as the milling time increased, the fraction of the crystalline carbon decreased, while the fraction of the amorphous carbon increased. The (002) peak became asymmetric before and after milling as the left side of the peak showed an increasingly gentle slope. For analysis, the asymmetric (002) peak was deconvoluted into two peaks, less-developed crystalline carbon (LDCC) and more-developed crystalline carbon. In both peaks, Lc decreased and d002 increased, but no significant change was observed after 6 h of milling time. In addition, the fraction of LDCC increased. As the milling continued, the mCF became more amorphous, possibly due to damage to the crystal lattices by the milling.
        4,000원
        9.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polyacrylonitrile/pitch nanofibers were prepared by electrospinning as a precursor for a gas sensor material. Pitch nanofibers were properly fabricated by incorporating polyacrylonitrile as an electrospinning supplement component. Polyacrylonitrile/pitch nanofibers were activated with steam at various temperatures followed by subsequent carbonization to make carbon nanofibers with a highly conductive graphitic structure. Steam activation was effective in facilitating gas adsorption onto the carbon nanofibers due to the increased surface area. The carbon nanofibers activated at 800°C had a larger surface area and a lower micro pore fraction resulting in a higher variation in electrical resistance for improved CO gas sensing properties.
        4,000원
        11.
        2017.05 구독 인증기관·개인회원 무료
        본 연구에서는 다공성 PAN(Polyacrylonitrile) 중공사 분리막을 지지체로 이용하여 계면중합반응을 통해 나노여과막을 제조하였다. 지지체로는 PAN을 사용하였으며 수용상으로는 피페라진으로 중공사 분리막 내부에 코팅한 후 유기상인 TMC와 반응하여 계면중합이 일어나도록 진행하였다. 지지체로 사용된 UF 중공사 분리막은 분획분자량 10,000, 30,000, 100,000Da를 각각 사용하였으며 피페라진(Piperazine) 농도를 0.1%, 02%, 0.3%, TMC(Trimesoyl Chloride)의 농도를 0.05%, 0.1%, 0.2%로 변화시켜 제조 하여 5bar에서의 수투과도(LMH)와 MgSO4 2000ppm, Na2SO4 2000ppm, NaCl 500ppm 수용액으로부터 염배제율(Rejection, %)을 확인하였다.
        12.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polyacrylonitrile (PAN)-based carbon fibers have high specific strength, elastic modulus, thermal resistance, and thermal conductivity. Due to these properties, they have been increasingly widely used in various spheres including leisure, aviation, aerospace, military, and energy applications. However, if exposed to air at high temperatures, they are oxidized, thus weakening the properties of carbon fibers and carbon composite materials. As such, it is important to understand the oxidation reactions of carbon fibers, which are often used as a reinforcement for composite materials. PAN-based carbon fibers T300 and T700 were isothermally oxidized in air, and microstructural changes caused by oxidation reactions were examined. The results showed a decrease in the rate of oxidation with increasing burn-off for both T300 and T700 fibers. The rate of oxidation of T300 fibers was two times faster than that of T700 fibers. The diameter of T700 fibers decreased linearly with increasing burn-off. The diameter of T300 also decreased with increasing burn-off but at slower rates over time. Cross-sectional observations after oxidation reactions revealed hollow cores in the longitudinal direction for both T300 and T700 fibers. The formation of hollow cores after oxidation can be traced to differences in the fabrication process such as the starting material and final heat treatment temperature.
        4,000원
        13.
        2015.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The process of oxidizing polyacrylonitrile (PAN)-based carbon fibers converts them into an infusible and non-flammable state prior to carbonization. This represents one of the most important stages in determining the mechanical properties of the final carbon fibers, but the most commonly used methods, such as thermal treatment (200°C to 300°C), tend to waste a great deal of process time, money, and energy. There is therefore a need to develop more advanced oxidation methods for PAN precursor fibers. In this review, we assess the viability of electron beam, gamma-ray, ultra-violet, and plasma treatments with a view to advancing these areas of research and their industrial application.
        4,000원
        14.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        New precursors, poly(acrylonitrile-co-crotonic acid) (poly(AN-CA)) and poly(acrylonitrile-co-itaconic acid-co-crotonic acid) (poly(AN-IA-CA)) copolymers, for the preparation of carbon fibers, were explored in this study. The effects of comonomers with acidic groups, such as crotonic acid (CA) and/or itaconic acid (IA), on the stabilization of nanofibrous polyacrylonitrile (PAN) copolymers were studied. The extent of stabilization, evaluated by Fourier transform infrared spectroscopy, revealed that the CA comonomer could retard/control the stabilization rate of PAN, in contrast to the IA comonomer, which accelerated the stabilization process. Moreover, the synthesized PAN copolymers containing CA possessed higher Mv than those of the IA copolymers and also showed outstanding dimension stability of nanofibers during the stabilization, which may be a useful property for improving the dimensional stability of polymer composites during manufacturing.
        4,000원
        15.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, activated carbon nanofiber(ACNF) electrodes with high double-layer capaci-tance and good rate capability were prepared from polyacrylonitrile nanofibersby optimiz-ing the carbonization temperature prior to H2O activation. The morphology of the ACNFs was observed by scanning electron microscopy. The elemental composition was determined by analysis of X-ray photoelectron spectroscopy. N2-adsorption-isotherm characteristics at 77 K were confirmedby Brunauer-Emmett-Teller and Dubinin-Radushkevich equations. ACNFs processed at different carbonization temperatures were applied as electrodes for electrical double-layer capacitors. The experimental results showed that the surface mor-phology of the CNFs was not significantlychanged after the carbonization process, although their diameters gradually decreased with increasing carbonization temperature. It was found that the carbon content in the CNFs could easily be tailored by controlling the carbonization temperature. The specificcapacitance of the prepared ACNFs was enhanced by increasing the carbonization temperature.
        4,000원
        16.
        2014.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Activated carbon nanofibers(ACNF) were prepared from polyacrylonitrile (PAN)-based nanofibersusing CO2 activation methods with varying activation process times. The surface and structural characteristics of the ACNF were observed by scanning electron microscopy and X-ray diffraction, respectively. N2 adsorption isotherm characteristics at 77 K were con-firmedby Brunauer-Emmett-Teller and Dubinin-Radushkevich equations. As experimental results, many holes or cavernous structures were found on the fibersurfaces after the CO2 activation as confirmedby scanning electron microscopy analysis. Specificsurface areas and pore volumes of the prepared ACNFs were enhanced within a range of 10 to 30 min of acti-vation times. Performance of the porous PAN-based nanofibersas an electrode for electrical double layer capacitors was evaluated in terms of the activation conditions.
        4,000원
        17.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polyacrylonitrile (PAN) 기질고분자를 용매인 dimethylformamide (DMF)에 녹인 후 전기방사법을 이용하여 polyacrylonitrile nanofibers membrane (PAM)을 제조하였으며, 정밀여과(microfiltration) 적용을 위해, 제조된 PAM 샘플들의 layer 수를 변화시켜, 기공크기를 조절하였다. 또한, 순수투과도(water-flux) 향상을 위해 poly (ethylene glycol) methyl ether methacrylate와 azobisisobutylronitrile (AIBN)을 이용하여 자유 라디칼 중합(free radical polymerization)을 통해 합성된 AN‐ PEGMA 공중합체를 PAN과 3:1의 비율로 혼합한 후 위와 같은 방법으로 다공성 막(PAM/APM)을 제조하였으며, FT-IR과 E.D.S 분석을 통해 PAM 샘플과 비교⋅분석하였다. Scanning Electron Microscope (SEM) 분석과 기공크기, 기공도 실험을 통해 균일한 직경(400∼600 nm)과 균일한 기공특성(0.5∼0.4 μm)을 가진 다공성 막이 제조되었음을 확인할 수 있었다. 순수 투과도 측정을 통해 정밀여과용 막으로의 활용가능성을 조사하였으며, AN‐PEGMA 공중합체가 도입된 PAM/APM의 경우 상 용막인 polyvinylidenefluoride (PVdF)에 비해 순수투과도가 상대적으로 높은 값을 나타내었다. 위의 결과로부터 전기방사법으로 제조된 PAN 나노섬유막들은 정밀여과용 막으로서 충분한 활용가능성이 있다고 판단된다.
        4,000원
        18.
        2013.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polyacrylonitrile (PAN) copolymers of different molecular weights were synthesized by a suspension polymerization and precipitation polymerization method. The rheology behaviors of the synthesized PAN copolymers were investigated in relation to their molecular weight, solid content and melting temperature. The influence of "historical effects" on the spinning solution of PAN was studied by analyzing the laws of viscosity considering the diversification time and temperature. The viscosity disciplines of each spinning solution conformed well to the rheological universal laws in a comparison of the suspension polymerization product with that of precipitation polymerization. Viscosity changes in the swelling process of dissolution were gentler in the suspension polymerization product; a small amount of water will quickly debase the solution viscosity, and high-speed mixing can greatly shorten the time required by the spinning solution to reach the final viscosity.
        4,000원
        19.
        2011.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polyacrylonitrile-based carbon nanofibers (CNFs) containing Ti and Mn were prepared by electrospinning. The effect of metal content on the hydrogen storage capacity of the nanofibers was evaluated. The nanofibers containing Ti and Mn exhibited maximum hydrogen adsorption capacities of 1.6 and 1.1 wt%, respectively, at 303 K and 9 MPa. Toward the development of an improved hydrogen storage system, the optimum conditions for the production of metalized CNFs were investigated by characterizing the specific surface areas, pore volumes, sizes, and shapes of the fibers. According to the results of Brunauer-Emmett-Teller analysis, the activation of the CNFs using potassium hydroxide resulted in a large pore volume and specific surface area in the samples. This is attributable to the optimized pore structure of the metal-containing polyacrylonitrile-based electrospun CNFs, which may provide better sites for hydrogen adsorption than do current adsorbates.
        4,000원
        20.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polyacrylonitrile (PAN) fibers were pre-oxidized in a temperature range of 180-275℃. The effects of positive and negative stretching on the structure and morphology of PAN fiber in the pre-oxidation process were studied by FTIR spectroscopy, XRD, and SEM. Mechanical property changes were also investigated. No changes in the movement and intensity of functional groups of PAN fibers were caused by positive stretching of up to 10% and negative stretching down to -8%. The crystal structure can be affected by the positive stretching and negative stretching. The maximum strength is 479.81 MPa when the stretching is positive, and the maximum strength is 420.55 MPa when the stretching is negative.
        4,000원
        1 2