검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 63

        21.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Here, a novel nitrogen-doped carbon nano-material (N-CGNM) with hierarchically porous structure was prepared from spent coffee ground for efficient adsorption of organic dyes by a simple one-step carbonization process (the uniform mixture consists of spent coffee ground, urea, and CaCl2 with the ratio of 1:1:1, which was heated to 1000 °C with a rate of 10 °C min− 1 and held at 1000 °C for 90 min in N2 atmosphere to carry out carbonization, activation, and N-doping concurrently). The morphology and structure analysis show that the prepared N-CGNM exhibits hierarchical pore structure, high specific surface area (544 m2/ g), and large numbers of positively charged nitrogen-containing groups. This unique structure and chemical composition endow N-CGNM with an excellent adsorption capacity toward anion Congo red (623.12 ± 21.69 mg/g), which is obviously superior to that (216.47 ± 18.43 mg/g) of untreated spent coffee ground-based carbon nano-materials (CGM). Oppositely, the adsorption capacity of N-CGNM towards cation methylene blue is inferior to that of CGM due to the existence of electrostatic repulsion. These findings show a great guidance for the development of low-cost but efficient selective adsorbent.
        4,300원
        22.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cost-effective and sustainable high-performance supercapacitor material was successfully prepared from cellulosic waste (Sapindus trifoliatus nut shells) biomass-derived activated carbon (CBAC) by physical activation method. The CBAC displays nanofiber morphology, high specific surface area (786 m2/ g), large pore volume (0.212 cm3 g− 1) which are evaluated using FESEM, BET and possessed excellent electrochemical behavior analyzed through various electrochemical methods. Moreover, the assembled symmetric CBAC//CBAC device exhibits high specific capacitance of 240.8 F g− 1 with current density of 0.2 A g− 1 and it is maintained to 65.6 F g− 1 at high current density of 2.0 A g− 1. In addition, the symmetric device delivers an excellent specific energy maximum of over 30 Wh kg− 1 at 400 W kg− 1 of specific power and excellent cycling stability in long term over 5000 cycles. The operation of the device was tested by light-emitting diode. Hence, CBAC-based materials pave way for developing large-scale, low-cost materials for energy storage device applications.
        4,200원
        23.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The high level of lithium storage in synthetic porous carbons has necessitated the development of accurate models for estimating the specific capacity of carbon-based lithium-ion battery (LIB) anodes. To date, various models have been developed to estimate the storage capacity of lithium in carbonaceous materials. However, these models are complex and do not take into account the effect of porosity in their estimations. In this paper, a novel model is proposed to predict the specific capacity of porous carbon LIB anodes. For this purpose, a new factor is introduced, which is called normalized surface area. Considering this factor, the contribution of surface lithium storage can be added to the lithium stored in the bulk to have a better prediction. The novel model proposed in this study is able to estimate the lithium storage capacity of LIB anodes based on the porosity of porous carbons for the first time. Benefiting porosity value (specific surface area) makes the predictions quick, facile, and sensible for the scientists and experts designing LIBs using porous carbon anodes. The predicted capacities were compared with that of the literature reported by experimental works. The remarkable consistency of the measured and predicted capacities of the LIB anodes also confirms the validity of the approach and its reliability for further predictions.
        4,000원
        24.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Doped porous carbon materials have attracted great interest owing to their excellent electrochemical performance toward energy storage applications. In this report, we described the synthesis of nitrogen-doped porous carbon (N-PC) via carbonization of a triazine-based covalent organic framework (COF) synthesized by Friedel–Crafts reaction. The as-synthesized COF and N-PC were confirmed by X-ray diffraction. The N-PC exhibited many merits including high surface area (711 m2 g−1), porosity, uniform pore size, and surface wettability due to the heteroatom-containing lone pair of electron. The N-PC showed a high specific capacitance of 112 F g−1 at a current density of 1.0 A g−1 and excellent cyclic stability with 10.6% capacitance loss after 5000 cycles at a current density of 2.0 A g−1. These results revealed that the COF materials are desirable for future research on energy storage devices.
        4,000원
        25.
        2021.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Hierarchically porous carbon materials with high nitrogen functionalities are extensively studied as highperformance supercapacitor electrode materials. In this study, nitrogen-doped porous carbon textile (N-PCT) with hierarchical pore structures is prepared as an electrode material for supercapacitors from a waste cotton T-shirt (WCT). Porous carbon textile (PCT) is first prepared from WCT by two-step heat treatment of stabilization and carbonization. The PCT is then nitrogendoped with urea at various concentrations. The obtained N-PCT is found to have multi-modal pore structures with a high specific surface area of 1,299 m2 g−1 and large total pore volume of 1.01 cm3 g−1. The N-PCT-based electrode shows excellent electrochemical performance in a 3-electrode system, such as a specific capacitance of 235 F g−1 at 1 A g−1, excellent cycling stability of 100 % at 5 A g−1 after 1,000 cycles, and a power density of 2,500 W kg−1 at an energy density of 3.593 Wh kg−1. Thus, the prepared N-PCT can be used as an electrode material for supercapacitors.
        4,000원
        26.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanostructured ZnO materials have been studied extensively because of their functional properties. This paper presents a composite material of zinc oxide quantum dots (ZnO QDs) and porous carbon using a one-step carbonization process. The direct carbonization of a metal–organic complex generates mesostructured porous carbon with a homogeneous distribution of ZnO QDs. The structural and morphological properties are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The resulting ZnO QDs@porous carbon composite delivers a high specific capacity of 990 mAh g−1 at 100 mA g−1, 357 mAh g−1 at 2 A g−1, and high reversibility when evaluated as an anode for lithium ion batteries.
        4,000원
        27.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we developed a facile and template-free strategy for the preparation of activated porous carbon beads (APCBs) from polyacrylonitrile. The chemical activation with KOH was found to enhance the pore properties, such as specific surface area (SSA), pore volume, and pore area. The APCBs exhibited a large SSA of 1147.99 m2/g and a pore area of 131.73 m2/g. The APCB-based electrodes showed a good specific capacitance of 112 F/g at 1 A/g in a 6 M KOH electrolyte, and excellent capacitance retention of 100% at a current density of 5 A/g after 1000 cycles. Therefore, the APCBs prepared in this study can be applied as electrode materials for electric double-layer capacitors.
        4,000원
        28.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To meet the increased performance and cost requirements of commercial supercapacitor, a N and O self-doped hierarchical porous carbon is fabricated via a green and simple self-activation route utilizing leaves of wild hollyhock as raw materials. Comparing to commercial activated carbon, the reported material exhibits some marked merits, such as simple and green fabrication process, low cost, and superior capacitance performance. The specific surface area of the obtained N and O codoped hierarchical porous carbon arrives 954 m2 g−1, and the content of the self-doped nitrogen and oxygen reaches 2.64 at.% and 7.38 at.%, respectively. The specific capacitance of the obtained material reaches 226 F g− 1 while the specific capacitance of the symmetric supercapacitor arrives 47.3 F g− 1. Meanwhile, more than 90.3% of initial specific capacitance is kept under a current density of 20 A g− 1, and no arresting degradation is observed for capacitance after 5000 times cycle, perfectly demonstrating the excellent cycle and rate capability of the obtained material. The obtained N and O co-doped hierarchical porous carbon are expected to be an ideal substitution for commercial activated carbon.
        4,200원
        29.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Effective processing and use of coal slime is of great significance to protect the environment and save resources. Different coal slimes (untreated with 43 wt% ash content, crushed and flotation treated with 10 wt% ash content, and pre-carbonized) were activated with KOH to prepare porous activated carbon. The results show the activated carbon prepared from coal slime with 10 wt% ash had high specific surface area (3037 m2/ g) and pore volume (1.66 cm3/ g), which was ascribed to the suitable contents of minerals as template and oxygen-containing functional groups. Electrochemical measurements exhibited the best specific capacitance of 220 F/g at 0.1 A/g and the cycle stability of over 100% capacitance retention after 1000 cycles at 5 A/g in 6 M KOH solution. Due to the high specific surface area, superior electrochemical performance, and facile and low cost, developing highly porous activated carbon for supercapacitors is one alternative way for effective use of coal slime waste.
        4,000원
        30.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 다공성 활성탄소와 금속유기골격체 복합재료 기반의 전극 재료와 “이온젤” 이라고 불리는 고분자 고체 전해질을 이용하여 슈퍼커패시터를 제작 하였으며, 금속유기골격체의 함량에 따른 전기화학적 거동을 관찰하여 보았다. 슈퍼커패시터의 전기화학적 특성은 순환전압전류법(CV), 전기화학적 임피던스 분광법(EIS) 및 전정류 충·방전법(GCD)으로 분석하였으며, 그 결과로, 다공성 활성탄소 대비 금속유기골격체를 0.5 wt% 첨가 하였을 때 가장 높은 전기용량값을 확인 할 수 있었으며, 0.5 wt% 이상의 금속유기골격체의 함유량은 전기화학적 특성 감소에 영향을 주는 것으로 사료되며, 이러한 결과를 바탕으로 제조된 다공성 활성탄소/금속유기골격체 복합재료 기반의 슈퍼커패시터는 다양한 분야에 활용이 가능 할 것으로 판단된다.
        4,000원
        31.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Metal–organic frameworks (MOFs) are network-like frameworks composed of transition metals and organic ligands containing oxygen or nitrogen. Because of its highly controllable composition and ordered porous structure, it has broad application prospects in the field of material synthesis. In this work, Zn4( PYDC)4(DMF)2∙3DMF (ZPD) was synthesized via a hydrothermal method. Self-doped nitrogen porous carbon ZPDC-T was then prepared by one-step carbonization. The results show that the self-doped nitrogen porous carbon ZPDC-850 has a micro/mesoporous structure with a specific surface area of 1520 m2 g− 1 and a nitrogen content of 6.47%. When a current density is 1.0 A g− 1, its specific capacitance is 265.1 F g− 1. After 5000 times of constant current charging and discharging, the capacitance retention rate was 79.2%. Thus, self-doped nitrogen porous carbon ZPDC-850 exhibits excellent electrochemical properties and good cyclic stability. Therefore, the self-doped nitrogen porous carbon derived from MOFs can be a promising electrode material for supercapacitors.
        4,000원
        32.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 “이온젤” 이라고 불리는 고분자 기반의 PVA(polyvinyl alcohol) 기반의 고체 전 해질에 이온성 액체 BMIMBF4 (1-buthyl-3-methylimidazolium tetrafluoroborate)를 첨가하여 제조한 전 고체 전해질과 활성탄소와 금속유기골격체 복합재료 기반의 전극 재료를 이용하여 슈퍼커패시터를 제작 하였으며, 유기골격체의 유 무에 따른 전기화학적 특성을 분석하여 보았다. 슈퍼커패시터의 전기화학적 특 성은 순환전압전류법(CV), 전기화학적 임피던스 분광법(EIS) 및 전정류 충·방전법(GCD)을 통하여 비교 및 분석하여 보았다. 그 결과로, 금속유기골격체가 함유되지 않은 슈퍼커패시터의 전기용량값은 380 F/g 으로 확인 할 수 있었고, 이 값은 금속유기골격체를 첨가하였을 때 340 F/g로 감소하는 현상을 확인할 수 있었 다. 이러한 결과로 1 wt%의 금속유기골격체의 함유량은 전기화학적 특성 감소에 영향을 주는 것으로 사료 되며 이러한 결과를 바탕으로 금속유기골격체의 첨가량을 최적화 할 필요가 있다고 판단된다
        4,000원
        33.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Energy and environmental are always two major challenges for the sustainable development of the modern human being. For avoiding the serious environmental pollution caused in the fabrication process of porous carbon, a popular energy storage material, we reported a facile, green and activating agent free route hereby directly carbonizing a special biomass, Glebionis coronaria. A nitrogen doped hierarchical porous carbon with a specific surface area of up to 1007 m2 g−1 and a N doping content of up to 2.65 at.% was facilely fabricated by employing the above route. Benefiting from the peculiarly hierarchical porous morphology, enhanced wettability and improved conductivity, the obtained material exhibits superior capacitance performance, which capacitance reaches up to 205 F g−1 under two-electrode configuration, and no capacitance loss is observed after 5000 cycles. Meanwhile, the capacitance retention of the obtained material arrives up to 95.0% even under a high current density of 20 A g−1, illuminating its excellent rate capability. The fabricated nitrogen-doped hierarchical porous carbon with larger capacitance than commercial activated carbon, excellent rate capability and cycle stability is an ideal cost-efficient substitution of commercial activated carbon for supercapacitor application.
        4,000원
        34.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Macro-porous carbon foams are fabricated using cured spherical phenolic resin particles as a matrix and furfuryl alcohol as a binder through a simple casting molding. Different sizes of the phenolic resin particles from 100– 450 μm are used to control the pore size and structure. Ethylene glycol is additionally added as a pore-forming agent and oxalic acid is used as an initiator for polymerization of furfuryl alcohol. The polymerization is performed in two steps; at 80oC and 200oC in an ambient atmosphere. The carbonization of the cured body is performed under Nitrogen gas flow (0.8 L/min) at 800oC for 1 h. Shrinkage rate and residual carbon content are measured by size and weight change after carbonization. The pore structures are observed by both electron and optical microscope and compared with the porosity results achieved by the Archimedes method. The porosity is similar regardless of the size of the phenolic resin particles. On the other hand, the pore size increases in proportion to the phenol resin size, which indicates that the pore structure can be controlled by changing the raw material particle size.
        4,000원
        35.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 구리 이온(Cu2+ ion) 제거를 위한 산화철(Fe3O4)/다공성 탄소 복합체를 합성하였으며, 이를 바탕으로 구리 이온 제거에 대한 특성 평가를 실시하였다. SEM, XRD 분석을 진행하여 수열합성(hydrothermal) 반응을 이용한 산화철/다공성 탄소 복합체의 형태와 구조를 확인하였다. BET 분석을 통해 비표면적과 기공 크기를 확인하였으며, UV-vis 장비를 통해 성능 평가를 실시하여 자성이 있는 Fe3O4와 다공성 탄소와의 시너지효과를 통해 액체 상태에서 존재하는 구리 이온을 제거할 수 있는 가능성을 제시하였다.
        4,000원
        36.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present work introduces a new method for the recycling of waste flocculation sludge to prepare electrode materials for supercapacitor. Hazardous azo dye was removal from textile dying wastewater by a new chitosan-based flocculant, and the generated dye sludge flocs was used as a nitrogen-containing precursor for the fabrication of N-doped carbon materials. The influence of azo dye on specific surface areas, nitrogen content, pore evolution of the resulting products and their electrochemical performance were investigated in detail. The results demonstrated a dual role of azo dye worked as both a nitrogen resource and pore-forming agent. The resulting N-doped carbon nanosheets derived from azo dye flocs demonstrated high electrochemical capacitance and good stability for supercapacitor electrode, which is attributed to the unique nitrogen doping, higher specific surface area and efficient charge transfer ability.
        4,000원
        37.
        2019.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Because of their excellent stability and highly specific surface area, carbon based materials have received attention as electrode materials of electrical double-layer capacitors(EDLCs). Biomass based carbon materials have been studied for electrode materials of EDLCs; these materials have low capacitance and high-rate performance. We fabricated tofu based porous activated carbon by polymer dissolution reaction and KOH activation. The activated porous carbon(APC-15), which has an optimum condition of 15 wt%, has a high specific surface area(1,296.1 m2 g−1), an increased average pore diameter(2.3194 nm), and a high mesopore distribution(32.4 %), as well as increased surface functional groups. In addition, APC has a high specific capacitance(195 F g−1) at low current density of 0.1 A g−1 and excellent specific capacitance(164 F g−1) at high current density of 2.0 A g−1. Due to the increased specific surface area, volume ratio of mesopores, and surface functional groups, the specific capacitance and high-rate performance increased. Consequently, the tofu based activated porous carbon can be proposed as an electrode material for high-performance EDLCs.
        4,000원
        40.
        2019.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To improve the performance of carbon nanofibers as electrode material in electrical double-layer capacitors (EDLCs), we prepare three types of samples with different pore control by electrospinning. The speciments display different surface structures, melting behavior, and electrochemical performance according to the process. Carbon nanofibers with two complex treatment processes show improved performance over the other samples. The mesoporous carbon nanofibers (sample C), which have the optimal conditions, have a high sepecific surface area of 696 m2 g−1, a high average pore diameter of 6.28 nm, and a high mesopore volume ratio of 87.1%. In addition, the electrochemical properties have a high specific capacitance of 110.1 F g−1 at a current density of 0.1 A g−1 and an excellent cycling stability of 84.8% after 3,000 cycles at a current density of 0.1 A g−1. Thus, we explain the improved electrochemical performance by the higher reaction area due to an increased surface area and a faster diffusion path due to the increased volume fraction of the mesopores. Consequently, the mesoporous carbon nanofibers are demonstrated to be a very promising material for use as electrode materials of high-performance EDLCs.
        4,000원
        1 2 3 4