Densification behavior of nano-agglomerate powder during pressureless sintering of Fe-Ni nanopowder was investigated in terms of diffusion kinetics and microstructural development. To understand the role of agglomerate boundary for sintering process, densification kinetics of Fe-Ni nano-agglomerate powder with different agglomerate size was investigated. It was found that activation energy for densification was lower in the small-sized agglomerate powder. The increase in the volume fraction of inter-agglomerate boundary acting as high diffusion path might be responsible for the enhanced diffusion process.
Successful implementation of the powder forming process requires a detailed understanding of several interacting phenomena. The aim is to better control the process variables and to optimize the design parameters. A number of studies were carried out using various constitutive models that take the density change during powder forming into account. Most of them were developed for powders and sintered porous metals, but few of them can describe powder agglomerates, whose behaviour is different from that of uniformly arranged powders. The modification is needed to account for the effect of agglomeration on densification behaviour. Incorporating powder agglomeration into a constitutive model is of considerable importance, as it provides a possibility of relating the powder densification response to microstructural characteristics of powder particles, especially in case of nano powders. In this paper, we proposed a new powder agglomerate model in order to describe the unique densification behaviour of nano powders. The proposed model was applied to the densification of powder agglomerates during cold isostatic pressing.