국내 중·저준위 방사성폐기물은 영구적 격리를 위해 처분장에 매립하고 있으며 그 위치는 경주에 있다. 이러한 방 사성폐기물의 영구적인 격리를 위한 처분시설은 공학적 방벽과 자연 방벽으로 구성되어 있으며 자연 방벽을 특성을 파악 하기 위하여 한국원자력환경공단에서는 2006년부터 부지특성조사를 수행하였고, 이후 부지감시 및 조사계획에 따른 감시 를 수행하여 부지특성의 변화를 지속적으로 확인하고 있다. 중저준위 방폐장의 수리지화학적 환경은 자연 방벽의 평가를 위해 중요한 요소로 손꼽히고 있으나 동해와 가까운 경주의 지역적 특성상 해수의 영향을 반드시 고려해야 한다. 따라서 본 연구에서는 처분 부지의 지하수 관정 7개 및 관정의 심도별 수질 자료를 취합해 지하수 자료 총 30개를 해수 2개소와 비교 분석하여 수리지화학적 환경을 해석하였다. 분석 자료는 수질 10개 항목(온도, EC, HCO3, Na, K, Ca, Mg, Cl, SO4, SiO2)을 2017년 3분기부터 2022년 3분기까지 총 5년간 20회의 자료를 활용하였다. 특히, EC, HCO3, Na, Cl의 농도 변화 를 통해 연구 지역의 배경 농도 및 관정의 구간별 해수의 영향을 파악하였으며, 시계열 군집 분석을 통해 담수, 기수, 해 수의 분류를 시도하였다. 그 결과, 기존의 모니터링 방법으로는 확인하지 못한 부지내 수리지화학적 변화를 제시하였다.
Every engineering decision in radioactive waste management should be based on both technical and economic considerations. Especially, the management of low-level radioactive waste (LLW) is more critical on economic concerns, due to its long-term and continuous nature, which emphasizes the importance of economic analysis. In this study, economic factors for LLW management were discussed with appropriate engineering applications. Two major factors that should be taken into account when assessing economic expectations are the accuracy of the results and its proper balancing with ALARA philosophy (As Low As Reasonably Achievable). The accuracy of the results depends on the correct application of alternatives within a realistic framework of waste processing. This is because the LLW management process involves variables such as component type, physical dimensions, and the monetary value at the processing date. Two commonly used alternatives are the simplified lump sum present worth and levelized annual cost methods, which are based on annual and capital costs. However, these discussions on alternatives not only pertain to the time series value of operational costs but also to future technical advancements, which are crucial for engineers. As new research results on LLW treatment emerge, proper consideration and adoption should be given to technical cost management. As safety is the core value of the entire nuclear industry, the ALARA philosophy should also be considered in the cost management of LLW. The typical cost of exposure in man-rem has ranged from $1,000 to $20,000 over the past decades. However, with increasing concerns about health and international political threats, the cost of man-rem should be subject to stricter criteria, even the balancing of costs and safety concerns is much controverse issue. Throughout the study, the importance of incorporating proper engineering insights into the assessment of technical value for the financial management of LLW was discussed. However, it’s essential to remember that financial management should not be solely assessed based on the size of expenses but rather by evaluating the current financial status, the value of money at the time, and anticipated future costs, considering the specific context and timeframe.
Properties of bentonite, mainly used as buffer and/or backfill materials, will evolve with time due to thermo-hydro-mechanical-chemical (THMC) processes, which could deteriorate the long-term integrity of the engineered barrier system. In particular, degradation of the backfill in the evolution processes makes it impossible to sufficiently perform the safety functions assigned to prevent groundwater infiltration and retard radionuclide transport. To phenomenologically understand the performance degradation to be caused by evolution, it is essential to conduct the demonstration test for backfill material under the deep geological disposal environment. Accordingly, in this paper, we suggest types of tests and items to be measured for identifying the performance evolution of backfill for the Deep Geological Repository (DGR) in Korea, based on the review results on the performance assessment methodology conducted for the operating license application in Finland. Some of insights derived from reviewing the Finnish case are as follows: 1) The THMC evolution characteristics of backfill material are mainly originated from hydro-mechanical and/or hydrochemical processes driven by the groundwater behavior. 2) These evolutions could occur immediately upon installation of backfill materials and vary depending on characteristics of backfill and groundwater. 3) Through the demonstration experiments with various scales, the hydro-mechanical evolution (e.g. advection and mechanical erosion) of the backfill due to changes in hydraulic behavior could be identified. 4) The hydro-chemical evolution (e.g. alteration and microbial activity) could be identified by analyzing the fully-saturated backfill after completing the experiment. Given the findings, it is judged that the following studies should be first conducted for the candidate backfill materials of the domestic DGR. a) Lab-scale experiment: Measurement for dry density and swelling pressure due to saturation of various backfill materials, time required to reach full saturation, and change in hydraulic conductivity with injection pressure. b) Pilot-scale experiment: Measurement for the mass loss due to erosion; Investigation on the fracture (piping channel) forming and resealing in the saturation process; Identification of the hydro-mechanical evolution with the test scale. c) Post-experiment dismantling analysis for saturated backfill: Measurement of dry density, and contents of organic and harmful substances; Investigation of water content distribution and homogenization of density differences; Identification of the hydro-chemical evolution with groundwater conditions. The results of this study could be directly used to establishing the experimental plan for verifying performance of backfill materials of DGR in Korea, provided that the domestic data such as facility design and site characteristics (including information on groundwater) are acquired.
The effect of various physicochemical processes, such as seawater intrusion, on the performance of the engineered barrier should be closely analyzed to precisely assess the safety of high-level radioactive waste repository. In order to evaluate the impact of such processes on the performance of the engineered barrier, a thermal-hydrological-chemical model was developed by using COMSOL Multiphysics and PHREEQC. The coupling of two software was achieved through the application of a sequential non-iterative approach. Model verification was executed through a comparative analysis between the outcomes derived from the developed model and those obtained in prior investigations. Two data were in a good agreement, demonstrating the model is capable of simulating aqueous speciation, adsorption, precipitation, and dissolution. Using the developed model, the geochemical evolution of bentonite buffer under a general condition was simulated as a base case. The model domain consists of 0.5 m of bentonite and 49.5 m of granite. The uraninite (UO2) was assigned at the canister-bentonite interface as the potential source of uranium. Assuming the lifetime of canister as 1,000 years, the porewater mixing without uranium leakage was simulated for 1,000 years. After then, the uranium leakage through the dissolution of uraninite was initiated and simulated for additional 1,000 years. In the base case model, where the porewater mixing between the bentonite and granite was the only considered process, the gypsum tended to dissolve throughout the bentonite, while it precipitated in the vicinity of bentonite-granite boundary. However, the precipitation and dissolution of gypsum only showed a limited effect on the performance of the bentonite. Due to the low solubility of uraninite in the reduced environment, only infinitesimal amounts of uranium dissolved and transported through the bentonite. Additional cases considering various environmental processes, such as seawater or cement porewater intrusion, will be further investigated.
Understanding the long-term geochemical evolution of engineered barrier system is crucial for conducting safety assessment in high-level radioactive waste disposal repository. One critical scenario to consider is the intrusion of seawater into the engineered barrier system, which may occur due to global sea level rise. Seawater is characterized by its high ionic strength and abundant dissolved cations, including Na, K, and Mg. When seawater infiltrates an engineered barrier, such dissolved cations displace interlayer cations within the montmorillonite and affect to precipitation/ dissolution of accessory minerals in bentonite buffer. These geochemical reactions change the porewater chemistry of bentonite buffer and influence the reactive transport of radionuclides when it leaked from the canister. In this study, the adaptive process-based total system performance assessment framework (APro), developed by the Korea Atomic Energy Research Institute, was utilized to simulate the geochemical evolution of engineered barrier system resulting from seawater intrusion. Here, the APro simulated the geochemical evolution in bentonite porewater and mineral composition by considering various geochemical reactions such as mineral precipitation/dissolution, temperature, redox processes, cation exchange, and surface complexation mechanisms. The simulation results showed that the seawater intrusion led to the dissolution of gypsum and partial precipitation of calcite, dolomite, and siderite within the engineered barrier system. Additionally, the composition of interlayer cation in montmorillonite was changed, with an increase in Na, K, and Mg and a decrease in Ca, because the concentrations of Na, K, and Mg in seawater were 2-10 times higher than those in the initial bentonite porewater. Further studies will evaluate the geochemical sorption and transport of leaked uranium-238 and iodine-129 by applying TDB-based sorption model.
With the importance of permanent disposal of high-level radioactive waste (HLW) generated in Korea, the deep geological disposal system based on the KBS-3 type is being developed. Since the deep geological repository must provide the long-term isolation of HLW from the surface environment and normal habitats for humans, plants, and animals, it is essential to assess the longterm performance of the disposal facility considering thermal-hydraulic-mechanical-chemical (TH- M-C) evolution. Decay heat dissipated from HLW contained in the canister causes an increase in temperature in the adjacent area. The requirement for the maximum temperature is established in consideration of the possibility of bentonite degradation. Therefore, when designing the repository, the temperature in the region of interest should be identified in detail through the thermal evolution assessment to ensure that the design requirement is satisfied. In the thermal evolution analysis, it is needed to evaluate the temperature distribution over the entire area of the disposal panel to consider the heat generated from both a single canister and adjacent canisters. Computational fluid dynamics (CFD) codes are widely used for detailed temperature analysis but are limited to simulating a wide range. Accordingly, in this study, we developed an analytical solution-based program for efficiently calculating the temperature distribution throughout the deposition panel, which is based on threedimensional heat conduction equations. The code developed can assess the temperature distribution of engineered and natural barrier systems. Principal parameters to be inputted are as follows: (a) geometry of the panel (e.g. width, length, height, spacing between canisters), (b) geometry of the canister (e.g. diameter, height), (c) thermal properties of bentonite and host-rock, (d) initial conditions (e.g. residual heat, temperature), and (e) time information (e.g. canister emplacement rate, time-interval, period). Through the calculation for the conceptual problem of a deposition panel capable of accommodating 900 (i.e. 30×30) canisters, it was confirmed that the program can adequately predict when and where the maximum temperature will occur. It is expected that the overall temperature distribution within the panel can be obtained by the evaluation of the entire region using this program reflecting the detailed design of the repository to be developed in the future. In addition, the thermal evolution analysis considering the influence of other canisters can be performed by applying the results as boundary conditions in the CFD analysis.
In 2012, POSIVA selected a bentonite-based (montmorillonite) block/pellet as the backfilling solution for the deposition tunnel in the application for a construction license for the deep geological repository of high-level radioactive waste in Finland. However, in the license application (i.e. SC-OLA) for the operation submitted to the Finnish Government in 2021, the design for backfilling was changed to a granular mixture consisting of bentonite (smectite) pellets crushed to various sizes, based on NAGRA’s buffer solution. In this study, as part of the preliminary design of the deep geological repository system in Korea, we reviewed history and its rationale for the design change of Finland’s deposition tunnel backfilling solution. After the construction license was granted by the Finnish Government in 2015, POSIVA conducted various lab- and full-scale in-situ tests to evaluate the producibility and performance of two design alternatives (i.e. block/pellet type and granular type) for backfilling. Principal demonstration tests and their results are summarized as follows: (a) Manufacturing of blocks using three types of materials (Friedland, IBeco RWC, and MX-80): Cracking and jointing under higher pressing loads were found. Despite adjusting the pressing process, similar phenomena were observed. (b) 1:6 scale experiment: Confirmation of density difference inhomogeneity due to the swelling of block/pellet backfill and void filling due to swelling behavior into the mass loss area of block/pellet. (c) FISST (Full-Scale In situ system Test): Identification of technical unfeasibility due to the inefficient (too manual) installation process of blocks/pellets and development of an efficient granular in-situ backfilling solution to resolve the disadvantage. (d) LUCOEX-FE (Large Underground Concept Experiments – Full-scale Emplacement) experiment: Confirmation of dense/homogeneous constructability and performance of granular backfilling solution. In conclusion, the simplified granular backfill system is more feasible compared to the block/ pellet system from the perspective of handling, production, installation, performance, and quality control. It is presumed that various experimental and engineering researches should be preceded reflecting specific disposal conditions even though these results are expected to be applied as key data and/or insights for selecting the backfilling solution in the domestic deep geological repository.
In the design of HLW repositories, it is important to confirm the performance and safety of buffer materials at high temperatures. Most existing models for predicting hydraulic conductivity of bentonite buffer materials have been derived using the results of tests conducted below 100°C. However, they cannot be applied to temperatures above 100°C. This study suggests a prediction model for the hydraulic conductivity of bentonite buffer materials, valid at temperatures between 100°C and 125°C, based on different test results and values reported in literature. Among several factors, dry density and temperature were the most relevant to hydraulic conductivity and were used as important independent variables for the prediction model. The effect of temperature, which positively correlates with hydraulic conductivity, was greater than that of dry density, which negatively correlates with hydraulic conductivity. Finally, to enhance the prediction accuracy, a new parameter reflecting the effect of dry density and temperature was proposed and included in the final prediction model. Compared to the existing model, the predicted result of the final suggested model was closer to the measured values.
It is important to make a strategy for clearance-level radioactive waste. Sampling and disposal plans should be drawn up with characteristics of target waste. In this paper, a target clearance-level radioactive waste is used in a laboratory for experiments with Cs-137 and Co-60, unsealed radioactive sources with gamma radiation isotopes. Therefore, it is enough to analyze with HPGe to check the contaminant level. The laboratory fume hood combined multiple materials, which means some are volume contamination and others are surface contamination. The wood, plastic, and drywall boards, which are absorbent volume contaminated parts and make up PVC pipes, base cabinet doors, backside baffles, etc., will be sampled with coring methods. The metals and glasses, which are unabsorbent, surface-contaminated parts, are sampled with smear methods. The work surface, baffles, exhaust plenum, and glass sash inside parts have a high possibility of being contaminated. The hood body, flame, base cabinet, PVC pipe (the rare end of the filter), and blower transition case have a low possibility of becoming contaminated. When we checked with HPGe, except for the work surface (which was below clearance level), other parts were less than MDA. The highest radionuclide concentration was in PVC pipe: Cs-137C 3.91E-02 (Bq/g), Co-60 4.54E- 03 (Bq/g). It is less than clearance level. Therefore, the waste was applied for the clearance level radioactive wastes and got permission from the regulatory body.
In Korea, many characteristic component facilities and technologies in general experimental areas for non-radiative materials are owned by industry-academia research. Still, no characteristic analysis test technology has been developed for large, intermediate-level decommissioning waste emitted by neutron irradiation. Since Korea plans to decommission nuclear power plants in 2027, securing analysis technology for intermediate-level decommissioning waste is essential. Accordingly, the Korea Research Institute of Decommissioning (KRID) plans to secure an infrastructure (hot cell) to analyze the characteristics of intermediate-level dismantled waste. Afterward, we intend to stably dispose of the waste generated while decommissioning the current Gori Unit 1/Wolseong Unit 1 using the intermediatelevel dedicated hot cell. It aims to secure high-dose/high-radiation decommissioning waste handling technology through intermediate-level hot cells for the first time in Korea, supports domestic nucleardecommissioning projects, and secure and validate procedures related to material characteristics and nuclide analysis of intermediate-level waste. Furthermore, research on intermediate-level radioactive materials is expected to be carried out in cooperation with schools and research institutes.
For the deep geological repository, engineering barrier system (EBS) is installed to restrict a release of radionuclide, groundwater infiltration, and unintentional human intrusion. Bentonite, mainly used as buffer and backfill materials, is composed of smectite and accessory minerals (e.g. salts, silica). During the post-closure phase, accessory minerals of bentonite may be redistributed through dissolution and precipitation due to thermal-hydraulic gradient formed by decay heat of spent nuclear fuel and groundwater inflow. It should be considered important since this cause canister corrosion and bentonite cementation, which consequently affect a performance of EBS. Accordingly, in this study, we first reviewed the analyses for the phenomenon carried out as part of construction permit and/or operating license applications in Sweden and Finland, and then summarized the prerequisite necessary to apply to the domestic disposal facility in the future. In previous studies in Sweden (SKB) and Finland (POSIVA), the accessory mineral alteration for the post-closure period was evaluated using TOUGHREACT, a kind of thermal-hydro-geochemical code. As a result of both analyses, it was found that anhydrite and calcite were precipitated at the canister surface, but the amount of calcite precipitate was insignificant. In addition, it was observed that precipitate of silica was negligible in POSIVA and there was a change in bentonite porosity due to precipitation of salts in SKB. Under the deep disposal conditions, the alteration of accessory minerals may have a meaningful influence on performance of the canister and buffer. However, for the backfill and closure, this is expected to be insignificant in that the thermal-hydraulic gradient inducing the alteration is low. As a result, for the performance assessment of domestic disposal facility, it is confirmed that a study on the alteration of accessory minerals in buffer bentonite is first required. However, in the study, the following data should reflect the domestic-specific characteristics: (a) detailed geometry of canister and buffer, (b) thermal and physical properties of canister, bentonite and host-rock in the disposal site, (c) geochemical parameters of bentonite, (d) initial composition of minerals and porewater in bentonite, (e) groundwater composition, and (f) decay heat of spent nuclear fuel in canister. It is presumed that insights from case studies for the accessory mineral alteration could be directly applied to the design and performance assessment of EBS, provided that input data specific to the domestic disposal facility is prepared for the assessment required.
Spent nuclear fuel temporary storage in South Korea is approximately 70% of total storage capacity as of the 4th quarter of 2022 amount is stored. In addition, according to the analysis of the Korean Radioactive Waste Society, saturation of nuclear power plant temporary storage is expected sequentially from 2031, and accordingly, the need for high-level radioactive waste disposal facilities has emerged. Globally, after the conclusion of the EU Taxonomy, for nuclear energy in order to become an ecofriendly energy, it is necessary to have a high-level radioactive waste disposal site and submit a detailed operation plan for high-level radioactive waste disposal site by 2050. Finland and Sweden have already received permission for the construction of high-level radioactive waste disposal facilities, and other countries, such as Switzerland, Japan, the United States, and Canada, are in the process of licensing disposal facilities. In order to establish a repository for high-level radioactive waste, the performance and safety analysis of the repository must be conducted in compliance with regulatory requirements. For safety analysis, it needs a collection of arguments and evidence. and IAEA defined it as ‘Safety case’. The Systematic method, which derives scenarios by systematizing and combining possible phenomena around the repository, is widely used for developing Safety case. Systematic methods make use of the concept of Features, Events and Processes (FEP). FEP identifies features that affect repository performance, events that can affect a short period of time, and processes that can have an impact over a long period of time. Since it is a characteristic of the Systematic method to compose a scenario by combining these FEP, the Systematic method is the basic premise for the development of FEP. Completeness is important for FEP, and comprehensiveness is important for scenarios. However, combining all the FEP into one scenario is time-consuming and difficult to ascertain the comprehensiveness of the scenario. Therefore, an Integrated FEP list is being developed to facilitate tracking between FEP and scenarios by integrating similar FEP. In this study, during the integrated FEP development process, a method for utilizing experts that can be used for difficult parts of quantitative evaluation and a quantitative evaluation process through the method were presented.
Bentonite, a material mainly used in buffer and backfill of the engineering barrier system (EBS) that makes up the deep geological repository, is a porous material, thus porewater could be contained in it. The porewater components will be changed through ‘water exchange’ with groundwater as time passes after emplacement of subsystems containing bentonite in the repository. ‘Water exchange’ is a phenomenon in which porewater and groundwater components are exchanged in the process of groundwater inflow into bentonite, which affects swelling property and radionuclide sorption of bentonite. Therefore, it is necessary to assess conformity with the performance target and safety function for bentonite. Accordingly, we reviewed how to handle the ‘water exchange’ phenomenon in the performance assessment conducted as part of the operating license application for the deep geological repository in Finland, and suggested studies and/or data required for the performance assessment of the domestic disposal facility on the basis of the results. In the previous assessment in Finland, after dividing the disposal site into a number of areas, reference and bounding groundwaters were defined considering various parameters by depth and climate change (i.e. phase). Subsequently, after defining reference and bounding porewaters in consideration of water exchange with porewater for each groundwater type, the swelling and radionuclides sorption of bentonite were assessed through analyzing components of the reference porewater. From the Finnish case, it is confirmed that the following are important from the perspective of water exchange: (a) definition of reference porewater, and (b) variations in cation concentration and cation exchange capacity (CEC) in porewater. For applying items above to the domestic disposal facility, the site-specific parameters should be reflected for the following: structure of the bedrock, groundwater composition, and initial components of bentonite selected. In addition, studies on the following should be required for identifying properties of the domestic disposal site: (1) variations in groundwater composition by subsurface depth, (2) variations in groundwater properties by time frame, and (3) investigation on the bedrock structure, and (4) survey on initial composition of porewater in selected bentonite The results of this study are presumed to be directly applied to the design and performance assessment for buffer and backfill materials, which are important components that make up the domestic disposal facility, given the site-specific data.