검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 66

        4.
        2016.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        과학기술 전문가가 근거를 제시하고 정책관료가 결정을 내리던 기존의 정책결정체계와는 달리, 불확실성과 이해관계 대립으로 특징지어지는 기술위험 영역에서 참여적 의사결정방법이 바람직한 모델로 상정되어왔다. 이어 여러 가지 정책실험이 이루어졌다. 그러나 의사결정과정에 있어서 ‘누가 어떤 역할을 할 것인가’에 대해서는 여전히 다양한 견해가존재한다. 본 연구는 기술위험 거버넌스에 대한 사회적 배경이 다른 두 나라인 영국과 한국에서 각각 수행된 방사성폐기물 관리방안 모색을 위한 공론화 프로그램을 역할분담의 관점에서 분석한다. 본고는 영국과 한국의 공론화 프로그램이 전개되는 과정에서 다양한 참여자그룹이 어떻게 정의되고, 어떠한 근거로 역할이 상정되며, 적용된 의사결정방법은 무엇인지에 관해 논의한다. 공론화과정의 사례연구를 통해 많은 기술선진 민주주의 사회에서 지지 받고 있는 ‘참여를 통한 의사결정’이라는 기술위험 거버넌스의 규범이자 방법론이 실제 각기다른 정치사회 환경에서 어떻게 구현되는 지를 살펴본다. 방사성폐기물 관리와 공론화에 대한 오랜 경험을 가진 영국과의 비교분석은 한국의 방사성폐기물 관리정책과 나아가 기술위험 거버넌스를 위한 정책도구를 정교화 하는 데 기여할 것이다.
        8,100원
        14.
        2023.11 서비스 종료(열람 제한)
        The Korea Atomic Energy Research Institute (KAERI) has facilities that are operated for the purpose of treating radioactive wastes and storing drums before sending them to a disposal site. Domestic regulations related to nuclear facility require radiological dose assessment resulting from release of gaseous radioactive effluent of nuclear facilities. In this study, ICRP-60-based dose conversion factors were applied to evaluate the radiation dose to residents in the event of operation and accident for the radioactive waste management facilities in KAERI. The radioactive gaseous effluent generated from each facility diffuse outside the exclusion area boundary (EAB), causing radiation exposure to residents. To evaluate the external exposure dose, the exposure pathways of cloudshine and radioactive contaminated soil were analyzed. The internal exposure dose was estimated by considering the exposure from respiration and ingestion of agricultural and livestock products. The maximum individual exposure dose was evaluated to be 1.71% compared to the dose limit. The assumed situation used for accidental scenarios are as follows; A fire inside the facility and falling of radioactive waste drum. It was a fire accident that caused the maximum exposure dose to individual and population living within an 80 km radius of the site. At the outer boundary of the low population zone (LPZ), the maximum effective dose and thyroid equivalent dose were estimated as 8.92 E-06% and 5.29 E-06%, respectively, compared to the dose limit. As a result of evaluating the radiological exposure dose from gaseous emissions, the radioactive waste treatment facilities and its supplementary facilities meet the regulations related to nuclear facility, and are operated safely in terms of radiological environmental impact assessment.
        15.
        2023.11 서비스 종료(열람 제한)
        KAERI has developed a Radioactive Waste Information Management System (RAWINGS) to manage the life-cycle information from the generation to the disposal of radioactive waste, in compliance with the low- and medium-level radioactive waste acceptance criteria (WAC). In the radioactive waste management process, the preceding steps are to receive waste history from the waste generators. This includes an application for a specified container with a QR label, pre-inspection, and management request. Next, the succeeding steps consist of repackaging, treatment, characterization, and evaluating the suitability of disposal, for a process to transparently manage radioactive wastes. Since the system operated in 2021, The system is enhanced to manage dynamic information, including the tracking of the location of radioactive waste and the repackaging process. Small packages of waste could be classified as either radioactive or clearance waste during pre-inspection. Furthermore, waste generated in the past has already been packaged in drums, and a new algorithm has been developed to apply the repackaging when reclassification is required. All radioactive waste with the unique ID number on the specific container is managed within a database, the total amount and history of waste are managed, and statistical information is provided. This system is continuously be operated and developed to oversee life-cycle information, and serve as the foundational database for the Waste Certification Program (WCP).
        16.
        2023.11 서비스 종료(열람 제한)
        As the acceptance criteria for low-intermediate-level radioactive waste cave disposal facilities of Korea Radioactive Waste Agency (KORAD) were revised, the requirements for characterization of whether radioactive waste contains hazardous substances have been strengthened. In addition, As the recent the Nuclear Safety and Security Commission Notice (Regulations on Delivery of Low- Medium-Level Radioactive Waste) scheduled to be revised, the management targets and standards for hazardous substances are scheduled to be specified and detailed. Accordingly, the Korea Atomic Energy Research Institute (KAERI) needs to prepare management methods and procedures for hazardous substances. In particular, in order to characterize the chemical requirements (explosiveness, ignitability, flammability, corrosiveness, and toxicity) contained in radioactive waste, it must be proven through documents or data that each item does not contain hazardous substances, and quality assurance for the overall process must be provided. In order to identify the characteristics of radioactive waste that will continue to be generated in the future, KAERI needs to introduce a management system for hazardous substances in radioactive waste and establish a quality assurance system. Currently, KAERI is thoroughly managing chelates (EDTA, NTA, etc.), but the detailed management procedures for hazardous substances related to chemical requirements in radioactive waste in the radiation management area specified above are insufficient. The KAERI’s Laboratory Safety Information Network has a total periodic regulatory review system in place for the purchase, movement, and disposal of chemical substances for each facility. However, there is no documents or data to prove that the hazardous substances held in the facility are not included in the radioactive waste, and there are no procedures for managing hazardous substances. Therefore, it is necessary to establish procedures for the management of hazardous substances, and we plan to prepare management procedures for hazardous substances so that chemical substances can be managed according to the procedures at each facility during preliminary inspection before receiving radioactive waste. The procedure provides definitions of terms and types of management targets for each characteristic of the chemical requirements specified above (explosiveness, ignition, flammability, corrosiveness, and toxicity). In addition, procedure also contains treatment methods of radioactive waste generated by using hazardous substances and management methods of in/out, quantity, history of that substances, etc. As the law is revised in the future, management will be carried out according to the relevant procedures. In this study, we aim to present the hazardous substance management procedures being established to determine whether radioactive waste contains hazardous substances in accordance with the revised the notice and strengthened acceptance criteria. Through this, we hope to contribute to improving reliability so that radioactive waste could be disposed of thoroughly and safely.
        17.
        2023.11 서비스 종료(열람 제한)
        Every engineering decision in radioactive waste management should be based on both technical and economic considerations. Especially, the management of low-level radioactive waste (LLW) is more critical on economic concerns, due to its long-term and continuous nature, which emphasizes the importance of economic analysis. In this study, economic factors for LLW management were discussed with appropriate engineering applications. Two major factors that should be taken into account when assessing economic expectations are the accuracy of the results and its proper balancing with ALARA philosophy (As Low As Reasonably Achievable). The accuracy of the results depends on the correct application of alternatives within a realistic framework of waste processing. This is because the LLW management process involves variables such as component type, physical dimensions, and the monetary value at the processing date. Two commonly used alternatives are the simplified lump sum present worth and levelized annual cost methods, which are based on annual and capital costs. However, these discussions on alternatives not only pertain to the time series value of operational costs but also to future technical advancements, which are crucial for engineers. As new research results on LLW treatment emerge, proper consideration and adoption should be given to technical cost management. As safety is the core value of the entire nuclear industry, the ALARA philosophy should also be considered in the cost management of LLW. The typical cost of exposure in man-rem has ranged from $1,000 to $20,000 over the past decades. However, with increasing concerns about health and international political threats, the cost of man-rem should be subject to stricter criteria, even the balancing of costs and safety concerns is much controverse issue. Throughout the study, the importance of incorporating proper engineering insights into the assessment of technical value for the financial management of LLW was discussed. However, it’s essential to remember that financial management should not be solely assessed based on the size of expenses but rather by evaluating the current financial status, the value of money at the time, and anticipated future costs, considering the specific context and timeframe.
        18.
        2023.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Evaluating the effectiveness of the radiation protection measures deployed at the Centralized Radioactive Waste Management Facility in Ghana is pivotal to guaranteeing the safety of personnel, public and the environment, thus the need for this study. RadiagemTM 2000 was used in measuring the dose rate of the facility whilst the personal radiation exposure of the personnel from 2011 to 2022 was measured from the thermoluminescent dosimeter badges using Harshaw 6600 Plus Automated TLD Reader. The decay store containing scrap metals from dismantled disused sealed radioactive sources (DSRS), and low-level wastes measured the highest dose rate of 1.06 ± 0.92 μSv·h−1. The range of the mean annual average personnel dose equivalent is 0.41–2.07 mSv. The annual effective doses are below the ICRP limit of 20 mSv. From the multivariate principal component analysis biplot, all the personal dose equivalent formed a cluster, and the cluster is mostly influenced by the radiological data from the outer wall surface of the facility where no DSRS are stored. The personal dose equivalents are not primarily due to the radiation exposures of staff during operations with DSRS at the facility but can be attributed to environmental radiation, thus the current radiation protection measures at the Facility can be deemed as effective.
        19.
        2023.05 서비스 종료(열람 제한)
        The amount of waste that contains or is contaminated with radionuclides is increasing gradually due to the use of radioactive material in various fields including the operation and decommissioning of nuclear facilities. Such radioactive waste should be safely managed until its disposal to protect public health and the environment. Predisposal management of radioactive waste covers all the steps in the management of radioactive waste from its generation up to disposal, including processing (pretreatment, treatment, and conditioning), storage, and transport. There could be a lot of strategies for the predisposal management of radioactive waste. In order to comply with safety requirements including Waste Acceptance Criteria (WAC) at the radioactive waste repository however, the optimal scenario must be derived. The type and form of waste, the radiation dose of workers and the public, the technical options, and the costs would be taken into account to determine the optimal one. The time required for each process affects the radiation dose and respective cost as well as those for the following procedures. In particular, the time of storing radioactive waste would have the highest impact because of the longest period which decreases the concentrations of radionuclides but increases the cost. There have been little studies reported on optimization reflecting variations of radiation dose and cost in predisposal management scenarios for radioactive waste. In this study, the optimal storage time of radioactive waste was estimated for several scenarios. In terms of the radiation dose, the cumulative collective dose was used as the parameter for each process. The cost was calculated considering the inflation rate and interest rate. Since the radiation dose and the cost should be interconvertible for optimization, the collective dose was converted into monetary value using the value so-called “alpha value” or “monetary value of Person-Sv”.
        20.
        2023.05 서비스 종료(열람 제한)
        During the operation of the nuclear power plant, various radioactive waste are generated. The spent resin, boron concentrates, and DAW are classified as a generic radioactive waste. They are treated and stored at radioactive waste building. In the reactor vessel, different types of radioactive waste are generated. Since the materials used in reactor core region exposed to high concentration of neutrons, they exhibit higher level of surface dose rate and specific activity. And they are usually stored in spent fuel pool with spent fuel. Various non-fuel radioactive wastes are stored in spent fuel pool, which are skeleton, control rod assembly, burnable neutron absorber, neutron source, in core detector, etc. The skeleton is composed of stainless 304 and Inconel-718. There are two types of control rod assembly, that are WH type and OPR type. The WH type control rod is composed of Ag-In-Cd composites. The OPR type control rod is composed of B4C and Inconel-625. In this paper, the characteristics and storage status of the non-fuel radioactive waste will be reported. Also, the management strategy for the various non-fuel radioactive waste will be discussed.
        1 2 3 4