The purpose of this study is to investigate the optimum conditions of dispersion and strength to maximize the mechanical properties of woody cellulose nano–crystal (CNC). As a dispersing method, ultrasonic dispersing machine and magnetic stirrer were used as the mechanical dispersion method. The mixing ratio of cellulose nano-crystals (CNCs) was 0.2% and the dispersion time was 10 minutes. Steam curing was carried out for 6, 24 and 48 hours. Based on the experimental results, we will propose source technology regarding CNC for construction materials.
Precast concrete produced in the industry is advantageous in a sense that it meets certain requiring standards and thus is easy to manage, and it saves construction period by shortening concrete curing time in the field. Nevertheless, studies on the strength evaluation of PC material by steam curing have rarely been done. In addition,as concrete becomes of high strength, it is speculated that relevant steam curing temperature history is also required. Therefore this study is on the steam curing method in manufacturing precast concrete products, and cement mortar has been used for experiments to exclude the possibility that concrete aggregate granularity and aggregate shape change may affect on strength development by cement hydration. In addition, this research is to provide the fundamental information of industrial manufacture of PC member by suggesting the optimal steam curing condition. The optimal steam curing condition has been investigated from the relations between temperature history condition and strength development, via modifying temperature patterns in various ways such as pre-tirne, curing maximaI temperature, maximaI temperature maintenance time which are factors that affect on high strength concrete product in steam curing.
Effects of recycled fine aggregate on the behavior of cement-based concrete were evaluated with different compressive strengths through experiments. It can be observed that recycled fine aggregate can be useful to fabricate precast concrete products in terms of having of concrete strength equivalent to natural aggregate.
Theoretical modeling is presented for the prediction of prestress loss of strands during the steam curing process. The model comprises heat transfer model, bond-slip model at elevated temperature and micromechanical model for prestress loss. The model was able to predict the experimentally measured prestress loss in a reasonable accuracy.
본 연구에서는 순환골재 콘크리트의 성능에 대한 양생방법의 영향에 대하여 실험적으로 고찰하였다. 순환골재 콘크리트 제조를 위하여부순골재에 순환골재를 0, 25, 50, 75 및 100%로 대체하였으며, 증기양생한 콘크리트의 압축 및 쪼갬인장강도, 투수공극, 염소이온 침투저항성 및 건조수축을 소정의 재령에서 측정하여 수중양생한 콘크리트의 성능과 비교하였다. 실험결과에 따르면, 양생방법에 관계없이 순환골재 대체율이 증가할수록 콘크리트의 역학적 성능은 감소하였다. 한편, 초기재령에서 증기양생된 콘크리트는 수중양생된 콘크리트와 비교하여 매우 우수한 성능을 나타내었다. 그러나, 장기재령 (28일)에서 증기양생의 효과는 초기재령에 비하여 두드러지게 나타나지 않음을 알수 있다. 결론적으로, 본 연구의 범위 내에서 순환골재 콘크리트의 성능향상을 위하여 증기양생법의 적용이 유용할 것으로 판단된다.
During the steam curing process, some initial prestress is lost due to the effect of high temperature. Limited number of quantitive evaluation has been reported on thermal loss of tendon during steam curing process. In this study, a theoretical evaluation was derived for the amount of prestress loss in prestressed concrete member during steam curing process. The equation devide overall process to 3 stages : from initial state to bonding state between concrete and tendon; just before cutting; and after cutting. The evaluation predicted the amount of prestress loss in the order of 7% of initial prestress force by direct thermal effect through all curing procedures. To validate the equation which estimate the amount of prestress loss, experimental studies should be performed.
The purpose of this study is to evaluate the flexural performance of a SHCC (Strain Hardening
Cementitious Composites) panel which was manufactured by steam curing method for precast slab system. From the bending test result, it was found that the SHCC panel showed approximately 7.32 MPa of maximum flexural strength, 58 mm of mid-span deflection appearing excellent strain hardening behavior and multiple micro cracks between bending moment section of the specimen.
본 논문은 프리캐스트 콘크리트 구조물의 조기강도를 촉진시키기 위한 양생공법 중에서 증기양생에 대한 연구내용으로서, 콘크리트 원주형 공시체와 목업체의 실험을 통하여 초기재령에서 요구되는 강도가 발현될 수 있는 증기양생주기와 최고온도를 정량화하여 최적 증기양생온도주기를 고찰 하였다. 또한 고온의 증기양생으로 인하여 발생된 콘크리트의 높은 온도와 거푸집 제거시에 발생되는 균열의 발생원인과 대책에 대하여 기술 하였으며, 궁극적으로는 PC 부재를 생산하는 과정에서의 조기강도발현과 품질확보를 동시에 만족하면서 경제성 있는 제작방법을 제시하였다.