검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 210

        1.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        담배, 배추, 고추, 복숭아 등을 가해하는 복숭아혹진딧물은 살충제의 지속적인 사용으로 인해 약제에 대한 저항성이 꾸준히 보고되고 있다. 본 연구에서는 단일처리시 약효가 낮은 약제들을 혼합 처리함으로써 약효의 상승효과를 확인할 수 있었으며, 실내검정에서 높은 혼합효과를 나타 낸 λ-cyhalothrin + flupyradifurone, λ-cyhalothrin + dimpropyridaz, flupyradifurone + chlorfenapyr, flupyradifurone + dimpropyridaz를 포장시험을 통해 검증하였다. 시험 결과, 4종의 혼합제는 복숭아혹진딧물 야외개체군에 대해 97% 이상의 방제가를 보여 약제 저항성 복 숭아혹진딧물 방제에 활용이 가능할 것으로 생각된다.
        4,000원
        2.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this article, improvement of heat screen failure for battle tank is proposed. The heat screen applied to protect a cam sensor from engine heat was cracked by vibrations generated in the engine. To solve this problem, the configuration of the heat screen was changed to a structure that can avoid engine vibration levels. The improved heat screen has first mode frequency at 4,000 RPM band outside the main operating range of the engine, and heat dissipation is at the same level as conventional heat screen. As a result, the improved heat screen secured reliability by improving vibration effects by approximately 163% while maintaining heat dissipation performance.
        4,000원
        3.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The main hydraulic pump is a device that generates the hydraulic pressure needed for the K2 tank. It is a pressure-compensated swash plate piston pump that generates the hydraulic power necessary to drive the hydraulic device. Hydraulic pump design changes were made due to frequent failures of the hydraulic pump. As a result of checking the operation records of the hydraulic pump, about 71% of the total engine operation time was in a stationary state where hydraulic pressure was not needed. This has the problem of constantly running when the engine is started, consuming unnecessary endurance time, and generating high noise. In this study, ISG(Idle Stop & Go) was applied to improve operation method. When applying ISG, the pressure can be reduced to about 85% or less in an environment where the operation of the main hydraulic pump is not necessary. So, the lifespan of the main hydraulic pump increases as a result of ISG application, thereby reducing the waste of national funds due to maintenance costs. Also, it is expected to contribute to improving combat power by reducing crew fatigue due to noise reduction.
        4,000원
        4.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, numerical analysis was performed on a type IV hydrogen storage tank to analyze the temperature change of hydrogen inside the tank and the filling performance by changing the inlet nozzle outlet angle and the number of outlets. Considering the residual state of charge (SOC) inside the initial tank, the initial pressure was 10 MPa, and the temperature of hydrogen inside the tank and the SOC results were analyzed when hydrogen with a temperature of 233 K was introduced under the conditions of liner, wrap, and outside temperature of 298 K. The results of the analysis showed that the charging completion rate reached the charging limit pressure. The analysis showed that time of filling completion, when the filling limit pressure is reached, the SOC result is about 94% for all geometry change conditions, and the filling completion time increases by 5s as the number of outlets decreases. The temperature change of the wrap area at the end of filling is up to 3.6K, which shows that the outside air temperature has a negligible effect on the hydrogen temperature change inside the tank.
        4,000원
        5.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The government declared ‘2050 carbon neutrality’ as a national vision in October 2020 and subsequently pursued the establishment of a ‘2050 carbon neutrality scenario’ as a follow-up response. Hydrogen is considered as one of the most promising future energy carriers due to its noteworthy advantages of renewable, environmentally friendly and high calorific value. Liquid hydrogen is thus more advantageous for large-scale storage and transportation. However, due to the large difference between the liquid hydrogen temperature and the environment temperature, an inevitable heat leak into the storage tanks of liquid hydrogen occurs, causing boil-off losses and vent of hydrogen gas. Researches on insulation materials for liquid hydrogen are actively being conducted, but research on support design for minimal heat transfer and enhanced rigidity remains insufficient. In this study, to design support structures for liquid hydrogen storage tanks, a thermal-structural coupled analysis technique was developed using Ansys Workbench. Analytical models were created based on the number and arrangement of supports to propose structurally safe support designs.
        4,000원
        6.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 ALOHA와 Bow-tie를 활용하여 메탄올 추진 선박의 저장 탱크가 울산항에서의 누출 시나리오를 가정하여 위험도 평가하였다. ALOHA를 이용하여 대안 및 최악의 시나리오를 산정하여 피해 범위를 예측하였다. 독성 영향 범위의 결과(ERPG-2 기준)로는 대안(629m), 최악(817m)로 육상 탱크 터미널의 부두 시설 및 거주 지역까지 포함되는 것으로 확인되었다. 인화성 영향 범위(LEL 10% 기준) 는 대안(126m), 최악(218m) 선박에서만 발생하였으며, 열복사 영향 범위(5.0kW/m2 기준)는 대안(56m), 최악(56m)로 선박에서만 영향을 미쳤 다. 또한, 전문가 집단을 구성하여 Bow-tie 기법을 통하여 예방 대책과 완화 대책을 평가하였다. 대책 유형 분류에서는 Hardware와 Human 으로 구분되었으며, 안전 유효성과 위험 심각성의 결과에서는 “Gas Freeing System”, “Ventilation System”, “Fire-Fighting System이 가장 높은 평가를 받았다. 위의 평가를 토대로 위험도 평가를 도식화하였다.
        4,200원
        7.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the design of fuel tank for SUVs (sports utility vehicles) was addressed through structural FE-simulation. For safety evaluation, we performed a shape analysis of fuel tank, discovered improvement measures for weak areas, and reflected them in the fuel tank design. Additionally, a strength analysis was conducted and the analysis results were reflected in the design. As a result of analysis through various design changes, it was possible to propose an appropriate fuel tank shape. Additionally, the effect of changes in the shape of the reinforcement and mounting bracket on the stiffness and strength of the fuel tank bracket was investigated.
        4,000원
        8.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hydrogen is considered as one of the most promising future energy carriers due to its noteworthy advantages of renewable, environmentally friendly and high calorific value. However, the low density of hydrogen makes its storage an urgent technical problem for hydrogen energy development. Compared with the density of gas hydrogen, the density of liquid hydrogen is more than 1.5 times higher. Liquid hydrogen is thus more advantageous for large-scale storage and transportation. However, due to the large difference between the liquid hydrogen temperature and the environment temperature, an inevitable heat leak into the storage tanks of liquid hydrogen occurs, causing boil-off losses and vent of hydrogen gas. Researches on insulation materials for liquid hydrogen are actively being conducted, but research on support design for minimal heat transfer and enhanced rigidity remains insufficient. In this study, to design support for liquid hydrogen storage tank, technique of thermal-structural coupled analysis including geometry, mesh, and boundary condition were developed using Ansys workbench, and equivalent stress and deformation distributions were analyzed.
        4,000원
        9.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The dissolved air at the bottom layer of the deep aeration tank transforms into fine gas bubbles within the MLSS (Mixed Liquor Suspended Solid) floc when exposed to the atmosphere. MLSS floc flotation occurs when MLSS from the deep aeration tank enters the secondary clarifier for solid-liquid separation, as dissolved air becomes fine air within the MLSS floc. The floated MLSS floc causes a high SS (Suspended Solid) concentration in the secondary effluent. The fine air bubbles within the MLSS floc must be removed to achieve stable sedimentation in the secondary clarifier. Fine bubbles within the MLSS floc can be removed by air sparging. The settleability of MLSS was measured by sludge volume indexes (SVIs) after air sparging MLSS taken at the end of the deep aeration tank. MLSS settling tests were performed at MLSS heights of 200, 300, 400, and 500 mm, and compressed air was fed at the bottom of the settling column with air flow rates of 100, 300, and 500 ml/min at each MLSS height, respectively. Also, at each height and air flow rate, air was sparged for 3, 5, and 7 minutes, respectively. SVI was determined for each height, air flow rate, and sparging time, respectively. Experimental results showed that a 300 mm MLSS height, 300 ml/min air flow rate, and 3 minutes of sparging time were the least conditions to achieve less than 120 ml/g of SVI, which was the criterion for good MLSS settling in the secondary clarifier.
        4,200원
        10.
        2024.04 구독 인증기관·개인회원 무료
        수소는 연소 과정에서 산소와 반응하여 물과 열만을 생성하며 공해 물질이 배출하지 않아 깨끗한 에너지원으로 간주된다. 이러한 특징으로 산업 활동으로 비롯된 대기 오염, 이상 기후 문제 등을 해결 하기 위한 대책안으로써 수소를 활용한 신재생에너지가 세계적으로 주목받고 있다. 이에 따라 선행 연 구에서는 수직형 탱크 구조의 취약부로 평가되는 지지부 단면 변화에 따른 영향성을 평가하기 위해 수소 생산 인프라 현장 조사를 수행한 바 있으며, 현장 조사 중에 현장 설치된 수소 탱크 강재 지지부 의 부식 문제를 확인하였다. 지지부의 부식은 구조물의 전체 강성을 감소시키며, 재난(지진)에 취약해 져 수소 저장 용기가 손상으로 인한 2차 피해로 이어질 수 있다. 이에 따라 본 연구는 선행 연구의 후속 연구로써 강재 지지부의 부식 문제를 개선하고자 고강도-저중량 재료인 CFRP(Carbon Fiber Reinforced Polymer)를 사용한 지지부를 개발하여 수치해석을 통해 CFRP 지지부의 내진 성능평가를 목적으로 한다. 해석에 사용된 수소 탱크는 크게 몸체, 지지부, 기초부, 앵커 볼트로 구성되어 있으며, 지지부는 높이 965mm, 75×75×9.5mm의 L형강 4개로 확인되었다. 지진 하중에 대한 동적 성능을 평가하기 위해 시간이력해석법이 사용되었으며, 적용 동적하중의 경우, ASCE의 ICC-ES에서 제시한 평가 기준에 따라 AC 156 Amplitude 100%의 인공 지진을 적용하였다. 해석 결과, CFRP 지지부와 강재 지지부 상단의 최대 변위가 각각 35.48, 32.54mm로 매우 유사한 것으로 나타났으며, Hashin Damage Criteria를 사용하여 CFRP 지지부의 최대 손상 지수를 측정한 결과 수지의 인장측에서 0.065로 확인되었다. 이는 기준 손상 지수 1 대비 매우 낮은 수준이며, 해석 결과를 종합했을 때 CFRP 지지부는 충분한 안전성을 보이는 것으로 판단된다.
        11.
        2024.03 구독 인증기관 무료, 개인회원 유료
        3,000원
        12.
        2024.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study performed the seismic response analysis of an LNG storage tank supported by a disconnected piled raft foundation (DPRF) with a load transfer platform (LTP). For this purpose, a precise analytical model with simultaneous consideration of Fluid-Structure Interaction (FSI) and Soil-Structure Interaction (SSI) was used. The effect of the LTP characteristics (thickness, stiffness) of the DPRF system on the seismic response of the superstructure (inner and outer tanks) and piles was analyzed. The analytical results were compared with the response of the piled raft foundation (PRF) system. The following conclusions can be drawn from the numerical results: (1) The DPRF system has a smaller bending moment and axial force at the head of the pile than the PRF system, even if the thickness and stiffness of the LTP change; (2) The DPRF system has a slight stiffness of the LTP and the superstructure member force can increase with increasing thickness. This is because as the stiffness of the LTP decreases and the thickness increases, the natural frequency of the LTP becomes closer to the natural frequency of the superstructure, which may affect the response of the superstructure. Therefore, when applying the DPRF system, it is recommended that the sensitivity analysis of the seismic response to the thickness and stiffness of the LTP must be performed.
        4,300원
        13.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Liquified hydrogen is considered a new energy resource to replace conventional fossil fuels due to environmental regulations by the IMO. When building tank for the storage and transportation of liquified hydrogen, materials need to withstand temperatures of -253°C, which is even lower than that of LNG (-163°C). Austenitic stainless steel mainly used to build liquified hydrogen tank. When building the tanks, both the base material and welding zone need to have excellent strength in cryogenic condition, however, manual arc welding has several issues due to prolonged exposure of the base material to high temperatures. Laser welding, which has some benefits like short period of exposure time and decrease of thermal affected zone, is used many industries. In this study, laser bead on plate welding was conducted to determine the laser butt welding conditions for STS 304 and STS 316L steels. After the BOP test, cross-section observations were conducted to measure and compare four bead parameters. These tendency result of laser BOP test can be used as conditions laser butt welding of STS 304 and STS 316L steel.
        4,000원
        14.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Decarbonization plays an important role in future energy systems for establishing a zero-carbon society. Hydrogen is believed to be a promising energy source that can be converted, stored, and utilized efficiently, leading to a broad range of possibilities for future applications. Hydrogen can be stored in various forms, including compressed gas, liquid hydrogen, hydrides, adsorbed hydrogen. Among these, liquid hydrogen has high gravimetric and volumetric hydrogen densities. There are a lot of previous studies on thermal behavior of MLI and VCS and optimization insulation system, but research on the insulation performance by varying the head shape of the tank has not been conducted. In this study, thermal-structural coupled analysis was conducted on the insulation system with VCS positioned between two layers of MLI for a liquid hydrogen storage tank. The analysis considered dome shapes (torispherical, circle, ellipses), and heat flux and temperature were derived from thermal analysis to predict insulation performance. Maximum equivalent stress and deformation were calculated from the structural analysis, and the optimal dome shape was proposed.
        4,000원
        19.
        2023.11 구독 인증기관·개인회원 무료
        When dismantling a power plant, a large amount of radioactive tanks are generated, and it is estimated that a significant amount of sludge will accumulate inside the tanks during long-term operation. In the process of dismantling a radioactive tanks, it is important to know the composition of the sludge because the sludge present inside must first be removed and then disposed of. In the case of certain tanks, it can be predicted that corrosion products generated due to system corrosion are the main cause of sludge formation. However, in the case of some tanks, it is not easy to predict the sludge composition because various dispersed particles in addition to corrosion products may be mixed with the wastewater. Even if it is collected and analyzed, the sludge composition can change significantly depending on the operation history, so the analysis results cannot be considered representative of the composition. In the case of LHST, surfactant components introduced during the washing and shower process, oil components and dispersed particles dissolved by the surfactant accumulate inside the tank, making sludge difficult to remove. In addition, even if it is removed by ultra-high pressure spraying, unexpected problems may occur in the subsequent treatment process due to the surfactant contained therein. Therefore, it is necessary to analyze in more detail the characteristics of sludge accumulated in LHST and prepare countermeasures. A test procedure was prepared to evaluate the characteristics of sludge accumulating in LHST. According to the test results, the long-term sludge accumulation tendency of the LHST is summarized as follows. ① Initially, the sludge settling speed increases slowly until a surface sludge layer is formed. ② After the surface sludge layer is formed, the sludge rapidly settles until the sludge layer becomes somewhat thicker. ③ When the sludge layer is formed to a certain extent, the sludge escape rate increases and the sludge accumulation rate decreases again. It is assumed that the sludge escape speed is closely related to the fluid flow speed in the relevant area. It is believed that the combined effect of these phenomena will determine the thickness of the sludge layer that will accumulate inside the tank, but it was not possible to evaluate how much the sludge layer would accumulate based on the experimental results alone. However, it can be assumed that significant sludge accumulation occurred in areas where fluid flow was minimal and sludge formation nuclei easily accumulates.
        20.
        2023.11 구독 인증기관·개인회원 무료
        We conducted safety assessments for the disposal of spent resin mixed waste after the removal of beta radionuclides (3H, 14C) in a landfill facility. The spent resin tank of Wolsong nuclear power plant is generated by 8:1:1 weight ratio of spent ion exchange resin, spent activated carbon and zeolite. Waste in the spent resin tank was classified as intermediate-level radioactive waste due to 14C. Other nuclides such as 60Co and 137Cs exhibit below the low-level radioactive waste criteria. The techniques for separating mixed waste and capturing 14C have been under development, with a particular focus on microwave-based methods to remove beta radionuclides (3H, 14C) from spent activated carbon and spent resin within the mixed waste. The spent resin and activated carbon within the waste mixture exhibits microwave reactivity, heated when exposed to microwaves. This technology serves as a means to remove beta isotopes within the spent resin, particularly by eliminating 14C, allowing it to meet the low-level radioactive waste criteria. Using this method, the waste mixture can meet disposal requirements through free water and 3H removal. These assessments considered the human intrusion scenarios and were carried out using the RESRAD-ONSITE code. The institutional management period after facility closure is set at 300 years, during which accidental exposures resulting from human intrusion into the disposal site are accounted for. The assessment of radiation exposure to intruders in a landfill facility included six human intrusion scenarios, such as the drilling scenario, road construction scenario, post-drilling scenario, and post-construction scenario. Among the six human intrusion scenarios considered, the most conservative assessment about annual radiation exposure was the post-drilling scenario. In this scenario, human intrusion occurs, followed by drilling and residence on the site after the institutional management period. We assumed that some of the vegetables and fruits grown in the area may originate from contaminated regions. Importantly, we confirmed that radiation doses resulting from post-institutional management period human intrusion scenarios remain below 0.1 mSv/y, thus complying with the annual dose limits for the public. This research underscores the importance of effectively managing and securing radioactive waste, with a specific focus on the safety of beta radionuclide-removed waste during long-term disposal, even in the face of potential human intrusion scenarios beyond the institutional management period.
        1 2 3 4 5