This study examined the spatiotemporal changes in Jilnal Wetland using satellite image-based time series data and field surveys. The analysis focused on changes in open water surface area and vegetation using the JRC Surface Water Monthly Water History dataset and Landsat imagery from 1984 to 2020. The impact of hydrological changes on vegetation was assessed through surveys conducted before and after the 2023 monsoon season. Results indicated a continuous decrease in open water surface area since the 1980s, with a sharp decline post-2003. NDVI analysis showed an inverse relationship between water area reduction and increased vegetation vigor and coverage. Field surveys revealed that hydrological changes directly affected vegetation structure, leading to new herbaceous communities and greater diversity post-monsoon. These findings highlight significant ecosystem changes driven by anthropogenic factors and natural succession, necessitating a comprehensive conservation strategy, including development control, hydrological management, terrestrialization prevention, and long-term monitoring.
한국의 주택시장은 2020년대에 들어 유례없는 폭등과 폭락을 반복하는 등 매우 민감한 가격 변동을 경험하였다. 특히 2024년 9월 서울특별시에서는 거래량 급감에도 불구하고 역대 최고 아파트 평균 매매가격이 경신되기도 하였다. 하지만 이러한 주택시장의 변동성은 지역에 따라 다소 이질적인 특성을 보이고 있다. 이에 본 연구에서는 최근 10년 간의 시계열적인 매매가격지 수를 기반으로 수도권 아파트의 주택 하위시장을 유형화하고 그 특성을 살펴보고자 한다. 이를 위해 수도권 시군구 단위로 2014-2024년 월간 아파트 매매가격지수 데이터셋을 구축하였고, 자기조직화 지도를 사용하여 매트릭스 형태의 시계열적 가격 변동을 2차원 공간상에 매핑하여 그래프로 작성하였다. 그 후 동적 타임 워핑을 유사성 척도로 하는 K-평균 군집화 및 계층적 밀도 기반 군집화 알고리즘을 이용한 시계열 군집 분석을 수행하여 주택 하위시장을 식별하였다. 연구 결과, 수도권 지역에서는 공통적으로 2014년 이후 아파트 매매가격이 지속적으로 상승하였고, 2020년을 기점으로 폭등한 후 2022년 급락하는 경향을 보였다. 그러나 지역별로 가격 변동의 정도와 패턴, 속도가 상이하였고 이에 대한 유형화를 진행한 결과 최종적으로 계단형(서울 인근 경기도 지역), 단기변동형(경기도 남・북부 지역), 안정형(경기도 서부 지역), 외곽 저속개발(수도권 외곽 및 접경지역), 지속상승(서울 및 인접 경기도 지역) 총 5개의 하위시장을 확인할 수 있었다. 본 연구는 민감한 가격 변동을 보이는 수도권 아파트의 하위시장을 실증적으로 구분하고, 하위시장의 독특한 시공간적 패턴에 대한 이해를 제공함으로써 향후 실효성 있는 지역 특수적 주택 정책 수립에 기여할 것으로 기대된다.
Researching and estimating the ecological characteristics of target fish species is crucial for fisheries resource management. The results of these estimates significantly influence stock assessments and management reference points such as size limit and closed seasons. Recently, ecological characteristics have been changing due to overfishing, climate change, and marine pollution, making continuous estimation and monitoring essential. This study analyzed the ecological changes in small yellow croaker (Larimichthys polyactis) resources in Korea over 24 years (2000-2023) using biological data (growth and gonad traits). By estimating the annual length-weight relationship and length at maturity (L50 and L95), we interpreted the numerical trends of early maturation due to resource depletion. The parameter b of the length-weight relationship, indicating the nutritional status of the resources, showed a slight increase over the years, suggesting relatively good nutritional status (b > 3.0) during most periods. Trend analysis between length at maturity and biomass indicated that as biomass decreased, maturity length also decreased.
본 연구는 대상지 내 녹지의 변화상을 GIS를 활용하여 시계열적으로 분석하고 이에 병행하여 연대순 녹지정책과 예산투입현황을 비교분석하여 녹지정책의 제안점을 도출하고자 한다. 본 연구에서는 첫 째, GIS분석을 통한 토지피복 변화량 분석을 통해 대전시 녹지변화 특성을 분석한다. 둘째, 대전시 녹지 정책 방향을 조사, 분석한다. 셋째, 분석한 녹지변화 특성과 대전시 정책방향 분석을 비교 분석하여 결 론을 도출하고자 한다. 연구결과로써 첫째, 대전시의 녹지면적은 1989년도에서 1998년도에는 서구와 대덕구를 제외한 구에서 녹지의 면적 증가량이 많아 전체적인 녹지면적이 증가하였고 1998년도에서 2009년도에는 동구와 대덕구를 제외한 구에서 녹지의 면적 증가량이 많아 전체적인 녹지가 증가하였 다. 하지만 2009년도에서 2020년도에는 5개 구 모두 녹지가 감소하여 전체적인 녹지 또한 감소한 것을 알 수 있었다. 둘째, 녹지정책과 예산을 보면 전반적으로 예산은 증가하는 추세에 있다. 2017년부터는 전년 대비 예산이 2배 정도 증액되어 투입되었으며, 2010년 대비 2020년에는 345%나 증가하였다. 각 구별로는 2010년에는 유성구>대덕구>동구>서구>중구로 예산이 많았으나 2020년에는 유성구>대덕 구>서구>동구>중구순이었다. 정책 또한 유성구, 서구, 동구, 중구, 대덕구 순으로 많은 정책을 시행하 였다. 마지막으로 비교분석 결과 유성구는 가장 많은 정책과 그에 따른 많은 예산을 썼으나 녹지의 감소 면적은 가장 많은 것으로 나타났다. 이와는 상반되게 대덕구는 가장 적은 정책과 세 번째로 적은 예산을 썼지만 녹지면적 변화는 가장 적게 나타났다. 시사점으로서 공원녹지의 기본바탕이 되는 녹지량은 시 가지 확장과 개발계획의 논리하에 지속해서 감소하여 가고 있다. 공원녹지의 새로운 흐름에 맞추어 양 적 확충에서 벗어나 질적인 측면에서 과감한 녹지정책의 발굴 및 예산의 확보를 통하여 시민들의 요구 도 및 쾌적한 도시환경의 균형적인 발전을 위한 노력이 요구된다.
This study endeavors to enrich investment prospects in cryptocurrency by establishing a rationale for investment decisions. The primary objective involves evaluating the predictability of four prominent cryptocurrencies – Bitcoin, Ethereum, Litecoin, and EOS – and scrutinizing the efficacy of trading strategies developed based on the prediction model. To identify the most effective prediction model for each cryptocurrency annually, we employed three methodologies – AutoRegressive Integrated Moving Average (ARIMA), Long Short-Term Memory (LSTM), and Prophet – representing traditional statistics and artificial intelligence. These methods were applied across diverse periods and time intervals. The result suggested that Prophet trained on the previous 28 days' price history at 15-minute intervals generally yielded the highest performance. The results were validated through a random selection of 100 days (20 target dates per year) spanning from January 1st, 2018, to December 31st, 2022. The trading strategies were formulated based on the optimal-performing prediction model, grounded in the simple principle of assigning greater weight to more predictable assets. When the forecasting model indicates an upward trend, it is recommended to acquire the cryptocurrency with the investment amount determined by its performance. Experimental results consistently demonstrated that the proposed trading strategy yields higher returns compared to an equal portfolio employing a buy-and-hold strategy. The cryptocurrency trading model introduced in this paper carries two significant implications. Firstly, it facilitates the evolution of cryptocurrencies from speculative assets to investment instruments. Secondly, it plays a crucial role in advancing deep learning- based investment strategies by providing sound evidence for portfolio allocation. This addresses the black box issue, a notable weakness in deep learning, offering increased transparency to the model.
The Fourth Industrial Revolution and sensor technology have led to increased utilization of sensor data. In our modern society, data complexity is rising, and the extraction of valuable information has become crucial with the rapid changes in information technology (IT). Recurrent neural networks (RNN) and long short-term memory (LSTM) models have shown remarkable performance in natural language processing (NLP) and time series prediction. Consequently, there is a strong expectation that models excelling in NLP will also excel in time series prediction. However, current research on Transformer models for time series prediction remains limited. Traditional RNN and LSTM models have demonstrated superior performance compared to Transformers in big data analysis. Nevertheless, with continuous advancements in Transformer models, such as GPT-2 (Generative Pre-trained Transformer 2) and ProphetNet, they have gained attention in the field of time series prediction. This study aims to evaluate the classification performance and interval prediction of remaining useful life (RUL) using an advanced Transformer model. The performance of each model will be utilized to establish a health index (HI) for cutting blades, enabling real-time monitoring of machine health. The results are expected to provide valuable insights for machine monitoring, evaluation, and management, confirming the effectiveness of advanced Transformer models in time series analysis when applied in industrial settings.
최근 기후변화로 가뭄, 홍수 등 재해의 빈도와 강도가 높아지고 있다. 이러한 재해의 피해를 줄이기 위해서는 시공간적 현황 파악을 통한 대비가 필요하다. 본 연구에서는 가뭄의 피해를 최소화하고자 지역별 밭작물의 필요수량과 공급량을 고려하여 밭가뭄 지역 등급화 실시하였고, 월별 비교를 통해 가뭄 취약 시기를 파악하였다. 전국 148개 지역 중 안전지역(Ⅰ), 안전지역(Ⅱ), 우려지역, 상습지역으로 구분한 25개 지역을 선정하였으며, 이 지역의 월별 필요수량 대비 공급량 분석을 하였다. 필요수량 산정의 재배작물은 콩으로 선정하였으며, 공급량은 공공관정, 민간관정, 상수도 자료를 분석하였다. 필요수량 대비 공급량이 봄철은 안전지역(Ⅰ), 안전지역(Ⅱ), 우려지역, 상습지역에서 각 1,281.5%, 667.6%, 729.5%, 316.3%, 가을철에는 각 436.0%, 212.8%, 213.9%, 105.3%로 공급이 충분할 것으로 분석되었으나 여름철에는 각 82.4%, 40.6%, 42.6%, 20.0%로 용수공급 이 부족한 것으로 분석되었다. 콩의 재배 기간인 5~9월에 관정(공공+민간)으로의 공급량은 대부분 지역에서 부족한 것으로 분석되었다. 이러한 분석을 통해 용수 부족이 발생하는 재배기간 동안 용수확보 방안이 필요하다.
우리나라 산불 발생에 관한 시계열적 특성은 다음과 같다. 1960년부터 2019년까지 연도별 산불 발생빈도는 약 16.6년을 주기를, 2003년부터 2019년까지 산불 발생빈도는 약 11.3개월의 주기를 갖는 것으로 확인되었고, 연도별, 월별 시계열은 안정된 경향을 보여 증가 혹은 감소하는 추세를 확인할 수는 없었다(P<0.05). 지역별 산불 발생 현황을 확인한 결과 경상북도에서 산불이 가장 많이 발생한 것으로 나타났고, 산불피해 면적은 강원도가 가장 넓은 특징을 보였다. 또한, 지역별 시계열적 주기성은 산불 발생빈도가 높은 순으로 FFT-Power가 높은 경향을 보였으나 공통적으로 약 11~12개월 사이의 주기를 갖는 것을 확인할 수 있었다. 또한, 요일별로 산불 발생빈도를 확인한 결과 요일별로 산불 발생빈도가 뚜렷하게 다르다는 결과를 얻을 수 있었다(P<0.001). 따라서 산불 발생빈도는 기상 현상 등 자연과학적인 요소와 함께 인문사회적인 요소 모두와 높은 관계에 있었다.
본 연구는 아파트 단지에 식재된 조경수의 시계열 변화를 파악하고 조경수 중 소나무의 수요를 예측하기 위하여 수행되었다. 2003년부터 2020년까지 수도권의 아파트 단지에 사용된 수목의 종수는 평균 51종이며 2000년대 중후반에 비하여 2010년대 후반에는 다양한 종류의 수목이 사용되었다. 식재 수량은 평균 149,567주/1단지이며 시계열 변화가 두드러지지 않는다. 상록수와 낙엽수의 수종 비율은 2:8 이지만 식재된 수량은 3.5:6.5의 비율이었다. 상록수는 낙엽수에 비하여 한 수종의 식재량이 많은 반면에 낙엽수는 상록수에 비하여 상대적으로 다양한 수종이 식재되고 있다. 교목과 관목의 수종 비율은 6:4이지만 식재량은 관목 97.6%로 식재량에 비해 식재된 수목의 종류는 다양하지 않다. 조경수 중에서도 선호도와 이용가치가 높은 소나무의 식재현황을 분석하면 식재 수량은 증가하는 경향이며 특히, 근원직경이 큰 소나무의 식재 비율이 증가하고 있다. 아파트 단지의 소나무 식재수요를 예측하면 식재량은 지속적으로 증가할 것이며 특히 근원직경 40㎝ 이상의 특수목의 수요가 증가할 것이다. 이러한 조경수의 수요변화에 대응하여 다양한 식물소재를 발굴하고 생산할 수 있는 전략이 요구된다. 특히 지속적으로 소나무의 대형화가 예측되므로 시장에서 요구하는 수형과 규격을 갖춘 소나무가 적기에 공급될 수 있도록 생산관리가 이루어져야 할 것이다.
2015년 ‘파리협정’ 및 2021년 ‘기후위기 대응을 위한 탄소중립·녹색성장 기본법’ 제정에 따라 2030년 국가 온 실가스 감축목표(NDC, 2018년 대비 40% 감축) 달성을 위해서는 지자체별 적절한 온실가스 감축 목표 설정과 이행 노 력이 필수적이다. 이에 이 연구에서는 충청북도 지역을 중심으로 1990-2018년 까지 온실가스 배출 현황을 시계열로 분석하였고, 2030년 국가 온실가스 감축목표와 시나리오를 바탕으로 충청북도의 2030년 온실가스 감축 목표를 제안하였 다. 또한 감축 목표 달성을 위해 BAU 대비 장래 배출량을 고려한 2030년까지의 감축 잠재량을 추정하였다. 그 결과, 첫째, 우리나라와 충북의 온실가스 배출량은 1990년 이래 인구 및 경제 성장에 따라 증가해온 것으로 나타났으며, 2018년 국가 대비 충북의 온실가스 배출량은 3.9%로 매우 낮은 편이였고, 시멘트 및 석회 생산, 제조업 및 건설업, 수 송업 등 연료연소에 의한 배출이 주를 이루는 것으로 나타났다. 둘째, 2030년 NDC 및 2050 탄소중립 시나리오를 반 영한 2030년 충청북도 온실가스 감축 목표는 2018년 대비 40.2%로 설정하였다. 이에 장래 배출량을 고려할 경우 목표 달성을 위한 감축 잠재량은 2018년 대비 46.8%인 것으로 추정되었다. 상기 결과는 국가 및 지자체의 온실가스 감축 목표 달성을 위해서는 분야별 온실가스 감축 수단을 통한 감축 잠재량을 충족하는 것이 중요하다는 것을 의미한다. 또 한 2030년 NDC 및 2050 탄소중립 시나리오 달성을 위해 충북을 포함한 국가 및 각 지자체는 온실가스 장래 배출량 을 연도별로 추정하여 매년 감축 목표와 감축 잠재량을 구하고 이를 삭감할 수 있는 구체적인 감축 수단을 마련할 필 요가 있음을 말해준다.
정부는 공유수면 매립사업의 계획적인 관리를 위해, 10년 주기의 공유수면 매립기본계획을 수립하고 있다. 그러나 수시변경을 통한 매립사업을 추진하는 경우가 상당한 비중을 차지하고 있는 것으로 나타났다. 이에 기본계획의 실효성에 대한 의문이 제기되고 있으 며, 이를 보완하기 위한 장기 매립 수요 추세 분석에 대한 필요성이 증가하고 있다. 이에 본 연구에서는 그간의 연간 매립 실적 자료를 활용하여 매립 수요 추세 분석을 수행하였다. 분석 결과, 국내 공유수면 매립 수요는 지속적으로 하락하는 추세인 것으로 나타났으며, 특 히 매립기본계획 체제로 전환된 1990년대 이후에는 그 추세가 뚜렷하게 나타나고 있는 것으로 나타났다. 또한 2021-2030년까지 총 매립 수요는 최대 13.8 km2에서 최소 1.7 km2 수준으로 산정되었다.
The time series data of rotifer community focusing on the species number and total density were collected from 29 reservoirs located at Jeonnam Province from 2008 to 2016 quarterly. The reservoirs had similar weather condition during the study period, but their sizes and water qualities were different. To analyze the temporal dynamics of rotifer community, the medians, ranges, outliers and coefficient of variation (CV) value of rotifer species number and abundance were compared. For the temporal trend analysis, time series of each reservoir data were compared and clustered using the dynamic time warping function of the R package “dtwclust”. Small-sized reservoirs showed higher variability in rotifer abundance with more frequent outliers than large-sized reservoirs. On the other hand, apparent pattern was not observed for the rotifer species number. For the temporal pattern of rotifer density, COD, phytoplankton abundance fluctuation, and cladoceran abundance fluctuation have been suggested as potential factor affecting the rotifer abundance dynamics.