2020년 국토교통부에서는 ‘결빙 취약구간 평가 세부 배점표’에 의하면, 전국의 고속국도 및 일반국도를 대상으로 결빙 취약 구간 464 개소를 선정하여 관리중에 있다. 그러나 감사원은 2020년 진행한 주요 사회기반시설(도로ㆍ고속철도) 안전관리실태 감사에서 결빙 취 약 구간 선정 시 터널 입출구부 등 결빙위험이 큰 구간이 도로포장 홈파기 대상구간에서 누락된 점을 지적하였다. 이러한 근거로 결 빙에 취약한 터널 입ㆍ출구에서 결빙사고가 우려되는 등 ‘겨울철 도로교통 안전 강화대책’의 실효성이 저하될 가능성이 제시되었다. 또한 본 연구에서 자체적으로 검토한 결과, 4개 특성 12개 항목으로 구성된 ‘결빙 취약구간 평가 세부 배점표’의 도로시설 항목에서 터널, 교량 등 도로시설물의 배점 부여 기준을 확인하기 어려웠으며, 각 도로시설에 대한 정의가 모호하여 평가표의 현장 적용성이 제 한되거나 신뢰도 검증이 부족한 점을 확인하였다. 본 연구에서는 국토교통부에서 제공하는 노드(Node) 및 링크(Link) 기반의 국내 도로망 GIS(Geographic Information System)데이터 에 결빙사고 데이터의 위치정보를 결합하여 고속국도 및 일반국도의 터널 및 교량 등을 포함하는 도로시설물 및 그 주변에서 발생한 결빙사고 이력을 자료화하였다. 최종적으로 도로시설물별 결빙사고 발생 비율 및 사고 심각도(사망자, 부상자 수)에 대한 분석을 통해 도로시설물의 결빙사고 상관 정도와 영향 범위를 파악하였다.
PURPOSES : A highway operates in a continuous flow and has restricted access. When an accident occurs on a highway, the impact on the traffic flow is large. In particular, an accident that occurs in a tunnel has a more significant impact than an accident that occurs in a general section. Accordingly, the management agency classifies the tunnel as a dangerous section and manages a tunnel of more than 1000 m using the Tunnel Transportation Management System. The purpose of this study was to select dangerous tunnels that require intensive management for the efficient management of highway tunnels.
METHODS : In this study, for the selection of dangerous tunnels for expressways, all highway tunnels were classified into five clusters by characteristics. The traffic accident severity — equivalent property damage only (EPDO) — for each tunnel cluster was derived through a traffic accident analysis. Based on the severity analysis results, the safety performance function (SPF) for each cluster was established, and the accident risk tunnel was selected based on the potential safety improvement (PSI) value of each tunnel calculated using the empirical Bayes (EB) method for each tunnel cluster.
RESULTS : As a result of the analysis, accident risk tunnels were selected based on the PSI values of the tunnels for each highway tunnel group. Finally, 55 hazardous tunnels were identified as hazardous tunnels: 13 tunnels in Cluster 1, 3 tunnels in Cluster 2, 15 tunnels in Cluster 3, 18 tunnels in Cluster 4, and 6 tunnels in Cluster 5.
CONCLUSIONS : After classifying all 1232 tunnels on the highway into five clusters according to tunnel characteristics, EPDO analysis was performed for each tunnel cluster. To this end, the SPF for each cluster was constructed, and accident risk tunnels were selected based on the PSI value of each tunnel calculated using the EB method for each tunnel cluster. The tunnel cluster was classified as a typical tunnel type. As a result, most of the first and second values were calculated from cluster E (long tunnel cluster).
PURPOSES : The purpose of this study is to derive implications by comparing overseas and domestic cases on the management of demand forecast risks in public-private partnerships (PPP) projects.
METHODS : Demand forecast risk management measures of PPP were classified into three categories: Expected project IRR, Minimum income guarantee, and LPVR mechanism. According to the classification method, the overseas demand risk sharing method was introduced. The risk methods of demand risk for PPP projects in Korea were classified and compared with that of overseas cases.
RESULTS : 1. The domestic PPP was developed from the perspective of investors rather than overseas. 2. The risk-sharing model was not considered during the bidding process. 3. The models for the demand forecasting errors were not diverse.
CONCLUSIONS : The domestic BTO project includes several risk factors, among which the burden on demand forecast risks is critical. Future studies will be required to quantitatively evaluate risk factors in PPP projects and properly share the risks between the government and the private sector.
서남해 해상풍력발전단지 내 선박 통항 금지와 조업 제한으로 인해 사업자와 어민간의 갈등이 심화되고 있다. 이러한 문제 해결을 위하여 국내에서도 유럽의 해상풍력발전단지와 같이 발전단지 내 선박 통항과 어로작업 허용을 검토하고 있다. 이 연구는 서남해 해상풍력발전단지 내 선박 통항을 가정하여 항로의 형태에 따른 해상교통위험도 발생비율을 ES 모델과 IWRAP을 이용하여 분석하였다. 또한, 항로의 형태(십자형 항로 및 격자형 항로)와 선박 통항량(현재, 3배, 5배, 10배)에 변화를 주어 위험도를 정량적으로 평가하였다. 주요 평가결과는 다음과 같다. 현재의 교통량에서 십자형 항로와 격자형 항로를 운영할 경우 조선부담감(종합환경스트레스치가 750 이상)이 높은 구간은 발생하지 않았으며, 연간 충돌확률도 큰 차이가 발생하지 않았다. 그러나 통항량이 현재보다 3배, 5배, 10배 증가함에 따라 교차지점에서 조선부담감과 연간 충돌확률이 급격히 증가함을 확인하였으며, 이를 통해 격자형 항로에서 교통류 분리를 통해 위험도를 효과적으로 분산시킬 수 있다는 것을 알 수 있었다. 본 연구의 결과는 서남해 해상풍력발전단지 내에서 항로설정, 항로운영방식, 안전대책 등에 활용이 가능할 것으로 기대된다.
항로에서의 위험도 평가 모델은 해상 교통량을 기초로 다양한 형태의 수학적 분석 방법 등이 응용되고 있다. 국내 해상교통안 전진단에서는 항로를 통항하는 선박 규모를 표준화시킨 해상교통혼잡도 모델을 활용하고 있으며, 해상교통혼잡도가 높으면 충돌과 같은 위험상황이 발생할 개연성이 높다고 해석하고 있다. 그러나 항로의 특정 지점에서 관측된 해상 교통량의 밀도 변화가 항로의 위험도를 표현할 수 있는지 보다 면밀한 과학적 검토가 필요하다고 판단된다. 본 연구에서는 항로에서의 충돌 및 좌초 등의 위험도를 확률적 기법으로 평가하는 IWRAP Mk2(IALA 공식 추천 평가모델) 모델로 항로 위험도를 체계적으로 평가하고, 동일 해역에서 해상교통혼잡도 모델로 해상교통혼잡도를 평가하여 항로 위험도와 해상교통혼잡도의 연관성을 분석하였다. 분석 결과, R2이 0.943인 선형함수가 도출되었으며, 유의수준에서도 유의성이 있는 것으로 분석되었다. 또한 Pearson 상관계수가 0.971로 높게 나타나 강한 정적 상관관계를 보였다. 이처럼 각각의 수학모델의 공통적인 입력 변수의 영향으로 항로 위험도와 해상교통혼잡도는 강한 연관성을 가지는 것으로 확인되었다. 이러한 연구 결과를 기반으로 항로 위험도를 예측할 수 있는 평가 기법이 고도화될 수 있는 모델 개발을 위한 응용 자료로 활용되기를 기대한다.
In order to assess risk as a basic step for securing safety, it requires to select risk factors and determine the frequency and the severity of the consequence of each risk factor. This research adopted common risk factors among well-known maritime risk assessment models, and proposed objective criteria to gauge the risk level of each risk factor. The starting points of risk evolution were chosen for criteria according to related studies and seafarers’ experience. The rate of risk appearance over the criteria is named as the incidence of risk factor. Therefore, the total risk level is expressed as the combination of incidence of each risk factor and severity. This quantitative method would be applied to measuring and comparing the risk level of target maritime zones, and it would also be useful to survey which risk factor be focused for reducing the total risk of a certain maritime zone.
This paper compared the consistency of the Environment Stress(ES) model and the Potential Risk Assessment Model (PARK model, which was developed based on a Korean mariner risk perception) for the Busan adjacent waterway. Evaluation of accuracy and comparison of these two models have been made by Vessel Traffic Service (VTS) officers in the Busan VTS Centre. The assessment results of Busan waterway show that the PARK model is more consistent than the ES model as follows. (1) The difference between assessment results applying ES model and PARK model with risk degree of VTSOs were 34% and 5% respectively in six typical traffic situations. (2) The assessment using PARK model is more suitable and identical with the VTSOs opinion in his or her duty time.
해상교통환경의 위험도를 평가하기 위해서는 위험도를 구성하고 있는 위험요소들을 명확히 식별하고, 식별된 위험요소들을 평가할 수 있는 기준을 마련하여야 한다. 한편 이러한 각 위험요소들의 위험수준의 합으로 전체 위험도를 나타낼 수 있으므로, 각 위험요소가 전체 위험도에서 차지하는 비중인 상대적 중요도가 분석되어야 한다. 본 연구는 선행연구에서 국내·외 해상교통환경 위험도 평가모델들의 검토를 통하여 제시된 국내 해상교통환경의 위험도를 구성하는 20가지 위험요소와 평가기준 및 해상교통전문가 집단에 의한 설문조사를 통하여 계층분석적의사결정법으로 분석한 각 위험요소의 상대적 중요도를 바탕으로, 국내 목포항 및 그 진입수로에 대한 해상교통환경의 위험도를 평가하였다. 목포항 및 그 진입수로는 비교평가를 위하여 총 4개의 해역으로 구분하여 분석하였으며, 분석결과 위험요소 해수운동 복잡성 예인선 도선사 선박교통관제 등에서 위험수준이 높게 나타난 정등해 항로의 위험도가 가장 높게 평가되었다. 이러한 평가결과는 동일한 해역에서 본 연구와는 다른 정성적 혹은 정량적 위험도 분석기법을 이용한 연구들의 평가결과와 대체로 일치하였다.