바이러스 여과는 동물세포기반 바이오 의약품 제조에서 중요한 정제 공정으로, 특수하게 설계 및 제조된 분리막 을 사용하여 바이러스를 차단하고 항체 등 바이오 의약 물질을 선택적으로 통과시킨다. 바이러스 필터의 핵심 성능인 바이러 스 제거율과 항체 및 단백질의 회수율은 필터의 기공 구조와 대칭성뿐만 아니라, 여과 조건(표면 다공성, 압력, 유속, pH, 이 온 강도 등)에 따라 달라진다. 특히 단백질 오염은 비가역적 및 가역적 오염으로 구분되며, 추가로 blocking 모델을 통해 정밀 하게 분석하였다. 본 총설에서는 바이러스 필터 및 여과 공정의 이해 및 최적화를 위해 필터 구조, 제거 기작과 막오염 현상 을 소개하고, 바이러스 여과 공정에서 제거성능에 영향을 미치는 다양한 인자를 분석해보고자 한다.
Cucumber mosaic virus (CMV) poses a considerable threat to a diverse array of crops in global agriculture. CMV impacts commercially important cut lilies by diminishing both yield and flower quality. We used RNA sequencing (RNA-seq) to investigate the changes in gene expression in the leaves and bulbs of four distinct cultivars of cut lily, ‘Cancun,’ ‘Brunello,’ ‘Connecticut King,’ and ‘Casa Blanca’ following CMV infection. Notably, CMV affected photosynthetic processes by significantly downregulating genes associated with photosynthesis. In addition, CMV infection was detrimental to chloroplast function and energy production. We observed differential expression of genes associated with both dominant and recessive resistance pathways that are crucial for preventing virus entry, replication, and systemic spread within the plant. Based on functional annotation and differential gene expression analysis, we identified the regulatory genes involved in triggering immune responses, modulating signal transduction, and specific host factors during CMV infection. To validate the RNA-seq findings, we selected four genes involved in resistance, virus multiplication, and virus spread and analyzed them using real-time quantitative reverse transcription PCR (qRT-PCR) with specific primers. The qRT-PCR results aligned closely with those from RNA-seq, showing consistent fold-change responses for the genes that were differentially expressed, indicating that the RNA-seq results were reliable. These results deepen our understanding of the complex genetics behind plant-virus interactions while also providing information for breeding programs that aim to develop CMV-resistant lily cultivars.
Because intact FMDV particles (146S) are often unstable in vitro, stabilizing foot-and-mouth disease virus (FMDV) antigens remains a key challenge in studying viral charateristics. Therefore, finding optimal condition to stabilize the FMDV is essential. In this study, we investigated formulations and potentials of several stabilizers such as appropriate buffer, excipients, and storage conditions to enhance the stability of 146S. Inactivated FMDV O-Jincheon (O-JC) was dissolved in various buffer formulations, and stored at 4℃ for two months to evaluate quantity of 146S at every 2-week interval. Among phosphate buffered saline (PBS), Tris buffered saline (TBS), HEPES buffered saline (HBS), and MOPS buffered saline (MBS), PBS showed more effective 146S stabilization that showed 1.3-1.6 fold higher 146S fraction than TBS, HBS, and MBS after storage for 2 weeks. However, constant dissociations of 146S were observed in all formulations at 8 weeks. Compared with other FMDVs, A22 Iraq and SAT-1, in PBS, O-JC proved to be the least stable in PBS. A variety of excipients including carbohydrate, sugar alcohol, cryo-protectant were tested for the capability in protecting O-JC from dissociation. By adding 4-8% sucrose, more than 60% of 146S fractions were maintained at 8 weeks, those were at least 1.8 fold higher than the PBS-only control. Addition of 1% β-cyclodextrin showed synergistic enhancement in O-JC stability. As the results of this study, it could be suggested that the PBS-based buffer together with 4-8% sucrose + 2% sorbitol or 2% sucrose + 2% sorbitol + 1% β-cyclodextrin could help the better stability of the O-JC in vaccine preparation.
The Japanese encephalitis virus (JEV) is a zoonotic pathogen that affects the nervous systems of humans, pigs, and horses. It has been classified into five genotypes (G1-G5) based on molecular analysis of the pre-membrane or envelope gene. In the Republic of Korea, the predominant JEV genotype has recently shifted from G3 to G1 and G5, highlighting the need for a rapid and accurate diagnostic method. In this study, we designed specific common and differential primer sets for JEV G1, G3, and G5 to detect the JEV gene. Four specific primer sets for JEV G1, G3, and G5 were used to selectively amplify the target gene. The detection limits of the common primer set for JEV G1, G3, and G5 were 100, 0.1, and 10 TCID50/reaction, respectively. The detection limits of the three differential primer sets were 1, 0.1, and 1 TCID50/reaction, respectively. No cross-reactivity was observed with non-JEV reference viruses. We successfully developed a multiplex reverse transcription polymerase chain reaction (RT-PCR) assay to distinguish the three JEV genotypes. Our multiplex RT-PCR assay is highly sensitive and specific, providing a reliable tool for confirming JEV infection in suspected samples. Additionally, our assay can be applied to suspected mosquito samples and commercial veterinary biological products.