To ensure the safety of disposal facilities for radioactive waste, it is essential to quantitatively evaluate the performance of the waste disposal facilities by using safety assessment models. This paper addresses the development of the safety assessment model for the underground silo of Wolseong Low-and Immediate-Level Waste (LILW) disposal facility in Korea. As the simulated result, the nuclides diffused from the waste were kept inside the silo without the leakage of those while the integrity of the concrete is maintained. After the degradation of concrete, radionuclides migrate in the same direction as the groundwater flow by mainly advection mechanism. The release of radionuclides has a positive linear relationship with a half-life in the range of medium half-life. Additionally, the solidified waste form delays and reduces the migration of radionuclides through the interaction between the nuclides and the solidified medium. Herein, the phenomenon of this delay was implemented with the mass transfer coefficient of the flux node at numerical modeling. The solidification effects, which are delaying and reducing the leakage of nuclides, were maintained the integrity of the nuclides. This effect was decreased by increasing the half-life and the mass transfer coefficient of radionuclides.
Structural stability of a waste form can be provided by the waste form itself (steel components, etc.), by processing the waste to a stable form (solidification, etc.), or by emplacing the waste in a container or structure that provides stability (HICs or engineered structure, etc.). The waste or container should be resistant to degradation caused by radiation effects. In accordance with the requirements for the domestic waste acceptance criteria, irradiation testing of solidified waste forms containing spent resin should be conducted on specimens exposed to a dose of 1.0E+6 Gy and other material 1.0E+7 Gy. Expected cumulative dose over 300 years is about 1.770E+6 Gy for spent resin and 0.770E+6 Gy for dried concentrated waste generated from NPPs generally. According to NRC Waste Form Technical Position, to ensure that spent resins will not undergo adverse degradation effects from radiation, resins should not be generated having loadings that will produce greater than 1E+6 Gy total accumulated dose. If it necessary to load resins higher than 1E+6 Gy, it should be demonstrated that the resin will not undergo radiation degradation at the proposed higher loading. This is the recommended maximum activity level for organic resins based on evidence that while a measurable amount of damage to the resin will occur at 1E+6 Gy, the amount of damage will have negligible effect on disposal site safety. Cementitious materials are not affected by gamma radiation to in excess of 1E+6 Gy. Therefore, for cement-stabilized waste forms, irradiation qualification testing need not be conducted unless the waste forms contain spent resins or other organic media or the expected cumulative dose on waste forms containing other materials is greater than 1E+7 Gy. Testing should be performed on specimens exposed to IE+6 Gy or the expected maximum dose greater than 1E+6 Gy for waste forms that contain ion exchange resins or other organic media or the expected maximum dose greater than 1E+7 Gy for other waste forms. This is suggestion as a review result that requirement for irradiation testing of solidified waste forms has something to be revise in detail and definitively.
A disposal of radioactive wastes is one of the critical issues in our society. Considering upcoming plans for dismantling of nuclear power plants, this problem is inevitable and should be discussed very carefully. There are variety of methods to handle with radioactive wastes, including Incineration, conventional gasification and plasma gasification. Among them, plasma gasification process is in the limelight due to its eco-friendly & stable operation, and large volume reduction effects. However, a fatal disadvantage is that it consumes more electric power than other methods, this leaves us a question of whether this process is indeed economical. Within the scope of this paper, I would like to introduce 4 cases which plasma facilities were evaluated economically in worldwide, and reach the conclusion on the economic feasibility of plasma process.
For the deep geological repository, engineering barrier system (EBS) is installed to restrict a release of radionuclide, groundwater infiltration, and unintentional human intrusion. Bentonite, mainly used as buffer and backfill materials, is composed of smectite and accessory minerals (e.g. salts, silica). During the post-closure phase, accessory minerals of bentonite may be redistributed through dissolution and precipitation due to thermal-hydraulic gradient formed by decay heat of spent nuclear fuel and groundwater inflow. It should be considered important since this cause canister corrosion and bentonite cementation, which consequently affect a performance of EBS. Accordingly, in this study, we first reviewed the analyses for the phenomenon carried out as part of construction permit and/or operating license applications in Sweden and Finland, and then summarized the prerequisite necessary to apply to the domestic disposal facility in the future. In previous studies in Sweden (SKB) and Finland (POSIVA), the accessory mineral alteration for the post-closure period was evaluated using TOUGHREACT, a kind of thermal-hydro-geochemical code. As a result of both analyses, it was found that anhydrite and calcite were precipitated at the canister surface, but the amount of calcite precipitate was insignificant. In addition, it was observed that precipitate of silica was negligible in POSIVA and there was a change in bentonite porosity due to precipitation of salts in SKB. Under the deep disposal conditions, the alteration of accessory minerals may have a meaningful influence on performance of the canister and buffer. However, for the backfill and closure, this is expected to be insignificant in that the thermal-hydraulic gradient inducing the alteration is low. As a result, for the performance assessment of domestic disposal facility, it is confirmed that a study on the alteration of accessory minerals in buffer bentonite is first required. However, in the study, the following data should reflect the domestic-specific characteristics: (a) detailed geometry of canister and buffer, (b) thermal and physical properties of canister, bentonite and host-rock in the disposal site, (c) geochemical parameters of bentonite, (d) initial composition of minerals and porewater in bentonite, (e) groundwater composition, and (f) decay heat of spent nuclear fuel in canister. It is presumed that insights from case studies for the accessory mineral alteration could be directly applied to the design and performance assessment of EBS, provided that input data specific to the domestic disposal facility is prepared for the assessment required.
Bentonite, a material mainly used in buffer and backfill of the engineering barrier system (EBS) that makes up the deep geological repository, is a porous material, thus porewater could be contained in it. The porewater components will be changed through ‘water exchange’ with groundwater as time passes after emplacement of subsystems containing bentonite in the repository. ‘Water exchange’ is a phenomenon in which porewater and groundwater components are exchanged in the process of groundwater inflow into bentonite, which affects swelling property and radionuclide sorption of bentonite. Therefore, it is necessary to assess conformity with the performance target and safety function for bentonite. Accordingly, we reviewed how to handle the ‘water exchange’ phenomenon in the performance assessment conducted as part of the operating license application for the deep geological repository in Finland, and suggested studies and/or data required for the performance assessment of the domestic disposal facility on the basis of the results. In the previous assessment in Finland, after dividing the disposal site into a number of areas, reference and bounding groundwaters were defined considering various parameters by depth and climate change (i.e. phase). Subsequently, after defining reference and bounding porewaters in consideration of water exchange with porewater for each groundwater type, the swelling and radionuclides sorption of bentonite were assessed through analyzing components of the reference porewater. From the Finnish case, it is confirmed that the following are important from the perspective of water exchange: (a) definition of reference porewater, and (b) variations in cation concentration and cation exchange capacity (CEC) in porewater. For applying items above to the domestic disposal facility, the site-specific parameters should be reflected for the following: structure of the bedrock, groundwater composition, and initial components of bentonite selected. In addition, studies on the following should be required for identifying properties of the domestic disposal site: (1) variations in groundwater composition by subsurface depth, (2) variations in groundwater properties by time frame, and (3) investigation on the bedrock structure, and (4) survey on initial composition of porewater in selected bentonite The results of this study are presumed to be directly applied to the design and performance assessment for buffer and backfill materials, which are important components that make up the domestic disposal facility, given the site-specific data.
This study introduces the licensing process carried out by the regulatory body for construction and operation of the 2nd phase low level radioactive waste disposal facility in Gyeongju. Also, this study presents the experience and lessons learned from this regulatory review for preparing the license review for the next 3rd phase landfill disposal facility. Korea Radioactive Waste Agency (KORAD) submitted a license application to Nuclear Safety and Security commission (NSSC) on December 24, 2015 to obtain permit for construction and operation of the national engineered shallow land disposal facility at Wolsong, Gyeongju. NSSC and Korea Institute of Nuclear Safety (KINS) started the regulatory review process with an initial docket review of the KORAD application including Safety Analysis Report, Radiological Environmental Report and Safety Administration Rules. After reflecting the results of the docket review, the safety review of revised 10 application documents began on November 29, 2016. Total 856 queries and requests for additional information were elicited by thorough technical review until November 16, 2021. As the Gyeongju and Pohang earthquakes occurred in September 2016 and November 2017, respectively, the seismic design of the disposal facility for vault and underground gallery was enhanced from 0.2 g to 0.3 g and the site safety evaluation including groundwater characteristics was re-investigated due to earthquake-induced fault. Also, post-closure safety assessments related to normal/abnormal/human intrusion scenarios were re-performed for reflecting the results of site and design characteristics. Finally, NSSC decided to grant a license of the 2nd phase low level radioactive waste disposal facility under the Nuclear Safety Laws in July 2022. This study introduces important issues and major improvements in terms of safety during the review process and presents the lessons learned from the experience of regulatory review process.
A radioactive waste disposal facility needs to be developed in a way to protect present and future generations and its environment. A safety assessment is implemented for normal and abnormal scenarios and human intrusion scenarios as a part of a safety case in developing a disposal facility for the radioactive waste. The human intrusion scenarios include a well scenario which takes into account various potential exposure groups (PEGs) who use a groundwater well contaminated with radionuclides released from the disposal facility. It is observed that a pumping rate has a negative correlation with the biosphere dose conversion factor (BDCF) in the well scenario. C-14 is shown to be a key radionuclide in the well scenario, and a special model based on the carbon cycle is applied for C-14. For Tc-99, an adsorption coefficient should be adjusted to be suitable for the site. The safety assessment for the radioactive waste disposal facility is successfully carried out for the well scenario. However, it is observed that site-specific models needs to be developed and sitespecific input data need to be collected in order to avoid unnecessary conservatism.
Glass fiber (GF) insulation is a non-combustible material, light, easy to transport/store, and has excellent thermal insulation performance, so it has been widely used in the piping of nuclear power plants. However, if the GF insulation is exposed to a high-temperature environment for a long period of time, there is a possibility that it may be crushed even with a small impact due to deterioration phenomenon and take the form of small particles. In fact, GF dust was generated in some of the insulation waste generated during the maintenance process. In the previous study, the disposal safety assessment of GF waste was performed under the abnormal condition of the disposal facility to calculate the radiation exposure dose of the public residing/ residents nearby facilities, and then the disposal safety of GF waste was verified by confirming that the exposure dose was less than the limit. However, the revised guidelines for safety assessment require the addition of exposure dose assessment of workers. Therefore, in this study, accident scenarios at disposal facilities were derived and the exposure dose to the workers during the accident was evaluated. The evaluation was carried out in the following order: (1) selection of accident scenario, (2) calculation of exposure dose, (3) comparison of evaluation results with dose limits, and confirmation of satisfaction. The representative accident scenarios with the highest risk among the facility accident were selected as; (a) the fire in the treatment facility, (b) the fire in the storage facility, and (c) fire after a collision of transport vehicles. The internal and external exposure doses of the worker by radioactive plume were calculated at 10m away from the accident point. In evaluation, the dose conversion factors ICRP-72 and FGR12 were used. As a result of the calculation, the exposure dose to workers was derived as about 0.08 mSv, 0.20 mSv, and 0.10 mSv, due to fire accidents (vehicle collision, storage facilities, treatment facilities). These were 0.2%, 0.4%, and 0.2% of the limit, and the radiation risk to workers was evaluated to be very low. The results of this study will be used as basic data to prove the safety of the disposal of GF waste. The sensitivity analysis will be performed by changing the radiation source and emission rate in the future.
경주 방폐물 처분시설의 1단계 시설로 건설된 지하 사일로 구조는 2014년에 10만 드럼 규모로 완공되어 현재 운영중에 있다. 지하 사일로 구조는 지름 25m, 높이 50m로써 방폐물을 저장하는 실린더부분과 돔 부분으로 구성되어 있으며, 돔부분은 운영터널과 연결 되는 하부 돔 부분과 상부 돔 부분으로 구분할 수 있다. 지하 사일로 구조의 벽체는 철근콘크리트 라이너이고, 두께는 약 1m이다. 본 논문에서는 지하 사일로 구조의 건설과정 및 운영과정의 단계별 유한요소해석을 수행하였다. SMAP-3D 프로그램을 사용하여 2차원 축대칭 유한요소해석을 수행하였다. 2차원 축대칭 유한요소모델의 신뢰성을 검토하고자 3차원 유한요소해석도 수행하였다. 본 논문 에서는 지하 사일로 구조의 구조거동을 분석하고 구조적 안전성을 검토결과를 제시하였다.
Near-surface disposal facility is more susceptible to intrusion than underground repository, resulting in more possible pathways for contaminant release. Alike human intrusion, animals (e.g. Ants, Moles, etc.) could intrude into the disposal site to excavate burrows, which could cause direct release of contaminants to biosphere. In this paper, animal intrusion is demonstrated using GoldSim’s commercial contaminant transport module and impact on the integrity of the near-surface disposal facility is evaluated in terms of fractional release rate of the contaminants. In this study, the near-surface disposal facility is modelled with a single concrete vault to contain radionuclide according to LLW concentration limit stated in NSSC notice No.2020-6. The release of contaminants is modelled to occur directly after the institutional control period, and the contaminants are mostly transported from the concrete vault to cover layers via diffusion. To produce mathematical model of the release of the contaminants due to animal intrusion, firstly, the fraction of burrow volume for each cover layer is calculated separately for each animal species, based on their maximum possible intrusion depth. In this study, fractions of burrow volume for ants and moles are calculated based on their maximum possible intrusion depths, where for ants is 2–3 m, and for moles is 0.1–0.135 m. Then, assuming that the contaminants are distributed homogeneously throughout each cover layers by diffusion, fraction of contaminants transported into the uppermost layer via excavation of the burrow is calculated for each layer based on burrow volume, and fraction of contaminants removed from the uppermost layer to the layers below via collapse of the burrow is also calculated based on the burrow volume. Lastly, the net transportation of contaminants into and out of the burrow via excavation and collapse, respectively, is calculated and demonstrated using direct transfer rate function of the GoldSim. Based on the simulated result, the maximum mass flux is too minor to cause a meaningful impact on the safety. The peak mass flux of the most sensitive radionuclide, I-129, is witnessed at around year 1,470, with a flux value of 5.36×10−6 g·yr−1. This minor release of the contaminants could be due to cover layers being much thicker than the maximum possible intrusion depth of the animals, preventing the animal intrusion into the deeper layers of higher radionuclide concentration. In future, this study can be used to provide a guidance and fundamental data for scenario development and safety evaluation of the near-surface disposal facility.
In nuclear power plants and nuclear facilities, radioactive waste containing hazardous substances (Mixed waste) is continuously generated due to research such as radiochemical study and nuclide analysis. In addition, radioactive waste including heavy metals and asbestos is generated during the dismantling process of nuclear power plants. Mixed wastes have both radiation hazards and chemical hazards, and there’s a possibility of synergistic effects generation. However, in most countries except the United States, there are no regulatory standards for the chemical hazards of mixed waste. The regulations applicable to mixed waste in Korea include the Nuclear Safety Act and the Waste Management Act. The Nuclear Safety Act prohibits the acceptance of hazardous radioactive waste in disposal facilities, but there is no definition or characteristic identification procedure for “hazardous.” The Waste Management Act also does not state the regulation for radioactive waste. In the Gyeongju disposal facility in Korea, the leachate in the disposal facility is expected to be a groundwater saturated with concrete and is expected to irradiated by radioactive waste. On the other hands, most of the non-radioactive waste landfill facilities are built on the surface, and the leachate is expected to be rainwater that reacts with the soil. Due to the differences in leaching environments, there’s a potential to overestimate or underestimate the leaching properties of hazardous substances if the standard leaching test is applied. To show for this, a leaching test simulating disposal facility’s environment were applied to sample waste containing heavy metals. The leaching solution was groundwater collected from the area near the Gyeongju disposal facility, which is then saturated with concrete and adjusted to pH 12.5. In addition, gamma-ray irradiation was conducted during the leaching test to observe changes in the leaching behavior of heavy metals in the actual radioactive waste disposal environment. As a result, lead showed significantly increased leaching compared to the standard test method, and cadmium was not detected in all experimental conditions except heavy irradiation. This study suggested that regulations on the hazardous of mixed waste should be settled, which should be established in sufficient consideration of the types and characteristics of substances contained in the waste.
한국원자력환경공단은 처분시설 내 1단계 인수·저장구역의 인수검사 공간 및 드럼 취급 공간 부족에 대한 문제를 해결하기 위하여 방폐물검사건물을 건설하여 저장·처리능력을 확충할 예정이다. 본 연구에서는 MCNP 코드를 이용하여 방폐물검사 건물 내 저장구역에서 취급하는 해체 방사성폐기물 대상 신형처분용기를 대상으로 작업종사자의 피폭선량을 평가하였다. 평가결과, 시설 내 저장 가능한 최대 용기 개수(304개)와 방사선작업에 대한 연간 예상 작업시간(약 306시간)에 대하여 연간 집단선량은 총 84.8 man-mSv로 계산되었다. 시설 내 총 304개의 신형처분용기(소형/중형 타입)가 저장 완료된 시점에서 인수검사, 처분검사를 위한 작업종사자의 투입인력은 총 25명, 작업종사자 당 예상피폭선량은 연평균 3.39 mSv로 산출 되었다. 소형용기 취급 시 작업종사자의 고방사선량 작업에 따른 작업효율과 방사선적 안전성 확보를 위해서는 콘크리트 라이너의 두께를 증가시키는 추가적인 차폐가 필요할 것으로 평가되었다. 향후 본 연구를 바탕으로 실측기반의 해체폐기 물의 선원항과 특성을 활용하여 방사선작업 당 작업시간 및 투입인력을 산출함으로써 작업종사자의 최적의 방사선작업조건을 도출할 수 있을 것으로 사료된다.