The cost of treating water purification plant water treatment residuals is high, with a low recovery rate and unstable effluent water quality, particularly in plants using lake and reservoir water sources in severe cold regions. Maximizing water resource utilization requires integrating water treatment residuals concentration and treatment effectively. Here, ceramic membrane technology was employed to separate supernatant and substrate after pretreatment. Optimal settling was achieved using 75 μm magnetic powder at 200 and 4 mg/L of nonionic polyacrylamide co-injection. Approximately 65% of the separated supernatant was processed by 0.1–0.2 μm Al2O3 ceramic membranes, yielding a membrane flux of 50 L/m2h and a water recovery rate of 99.8%. This resulted in removal rates of 99.3% for turbidity, 98.2% for color, and 87.7% for color and permanganate index (chemical oxygen demand, COD). Furthermore, 35% of the separated substrate underwent treatment with 0.1–0.2 μm mixed ceramic membranes of Al2O3 and SiC, achieving a membrane flux of 40 L/m2h and a water recovery rate of 73.8%. The removal rates for turbidity, color, and COD were 99.9%, 99.9%, and 82%, respectively. Overall, this process enables comprehensive concentration and treatment integration, achieving a water recovery rate of 90.7% with safe and stable effluent water quality.
As water resources are limited and legal regulations are strengthened, there is a growing need to reuse residuals in WTP(Water Treatment Plant). In this study, membrane filtration system was constructed and its operation method was studied for water quality stabilization and reuse of WTP residuals. The operation parameters were stable for 1 year and 6 months. Membrane fouling was identified as particulate pollution (activated carbon) and inorganic pollution (manganese). The membrane system was operated steadily with raw water of high concentration SS(Suspended solid) containing activated carbon because membrane fouling was reduced by the effect of End-Free type. In the case of inorganic contamination, dissolved manganese eluted by chemicals and acted as a membrane fouling source, and the operating conditions for minimizing membrane fouling were confirmed by newly developing application methods and types of cleaning chemicals. Based on the results, design parameters for reducing manganese membrane fouling were derived.