The cost of treating water purification plant water treatment residuals is high, with a low recovery rate and unstable effluent water quality, particularly in plants using lake and reservoir water sources in severe cold regions. Maximizing water resource utilization requires integrating water treatment residuals concentration and treatment effectively. Here, ceramic membrane technology was employed to separate supernatant and substrate after pretreatment. Optimal settling was achieved using 75 μm magnetic powder at 200 and 4 mg/L of nonionic polyacrylamide co-injection. Approximately 65% of the separated supernatant was processed by 0.1–0.2 μm Al2O3 ceramic membranes, yielding a membrane flux of 50 L/m2h and a water recovery rate of 99.8%. This resulted in removal rates of 99.3% for turbidity, 98.2% for color, and 87.7% for color and permanganate index (chemical oxygen demand, COD). Furthermore, 35% of the separated substrate underwent treatment with 0.1–0.2 μm mixed ceramic membranes of Al2O3 and SiC, achieving a membrane flux of 40 L/m2h and a water recovery rate of 73.8%. The removal rates for turbidity, color, and COD were 99.9%, 99.9%, and 82%, respectively. Overall, this process enables comprehensive concentration and treatment integration, achieving a water recovery rate of 90.7% with safe and stable effluent water quality.
As water resources are limited and legal regulations are strengthened, there is a growing need to reuse residuals in WTP(Water Treatment Plant). In this study, membrane filtration system was constructed and its operation method was studied for water quality stabilization and reuse of WTP residuals. The operation parameters were stable for 1 year and 6 months. Membrane fouling was identified as particulate pollution (activated carbon) and inorganic pollution (manganese). The membrane system was operated steadily with raw water of high concentration SS(Suspended solid) containing activated carbon because membrane fouling was reduced by the effect of End-Free type. In the case of inorganic contamination, dissolved manganese eluted by chemicals and acted as a membrane fouling source, and the operating conditions for minimizing membrane fouling were confirmed by newly developing application methods and types of cleaning chemicals. Based on the results, design parameters for reducing manganese membrane fouling were derived.
본 연구는 비용매 상분리법(nonsolvent induced phase separation, NIPS)을 사용하여 제조한 분리막의 배출수 처리 현장 적용성 test를 위한 최적 유효막 길이 선정 하기 위해, 동일한 원수, 기본 공정 조건으로 유효막 길이를 변화시켜 운전에 따른 역세 효율 및 운전압을 관찰하였다.
동일한 공정조건에서 유효막 길이의 변화를 주어 500㎜, 1,000㎜, 1,500㎜의 유효막 길이에 따라 1.5일간 고탁도의 가혹한 조건에서 공정을 지속하여 측정을 실시하였다.
유효막 길이별 운전 결과 유효막 길이에 따른 역세에 의한 효율차이를 확인할 수 있었으며 고탁도의 원수를 사용하여 중공사 막의 내부 폐색이 진행되었으며 유효막 길이가 길수록 폐색되지 않은 bore쪽으로만 역세가 진행되어 여과 후 역세에 의한 회복이 현저히 떨어짐을 확인하였다.
A Gravity-driven membrane (GDM) system is one of the promising solutions for household drinking water treatment in the developing countries. In this study, the GDM system was tested for optimizing manual cleaning protocols using three different feed water solutions. Two types of manual cleaning were performed to delay the permeability decrease, cleaning between batches and long-term cleaning. The optimized cleaning between batches protocol was 3 twisting and 10 vertical shaking. And the optimized long-term cleaning protocol was 70 vertical shaking for both the middle region of the module and near the header part. These cleaning protocols allowed the system to produce sufficient water to meet the daily minimum water requirements for a 5-person family, even for using the wastewater influent. The system produced Escherichia coli free water.