EAF dust which is contained around 30% of zinc, 15% of iron and 3% of lead individually, is chemically treated by ammonium chloride, ammonia water, ammonia gas and carbon dioxide, and also tested and identified the ratios of the recovery of In by applied the variations of particle size, pH and heating temperature as well, in order to getting optimized recovery of the In metal after performing all of those processes. Experimental results showed that the rate of Zn recovery is 97% when the mixture of 1.3 of NH4Cl/EAF is heated to the temperature of 400℃ and leached by water, and 95% recovery of In when ammonia gas and carbon dioxide is added simultaneously and adjust the 9.5 of pH to the same mixture above. For the purpose of remove the impurities in the mixed sample, which is prepared by the two samples, indicated above showing as the ratio of 95% and 97% recovery, in case of applied the cementation process to it, and also by electrolytic process, produced the In plate of 95~97%, and acquired 99-99.5% of In metal ingot finally by applied the heating process at 470~500℃.
세계 제강산업의 연간 생산량은 약 1,600만 톤이며 이 중 약 40%가 폐철을 원료로 하는 전기제강로(Electric Arc Furnace)에서 생산된다. 이 전기로에서 발생하는 전기로 제강분진(Electric Arc Furnace Dust)은 카드뮴, 납 등의 유해중금속을 포함하고 있어 지정폐기물로 분류되어 고비용으로 처리하고 있다. 반면 철, 아연 등 재활용가능 금속 또한 30~60% 정도로 다량 함유하고 있어 재활용 공정에 대한 다양한 연구가 진행되어 왔다. EAFD는 원료의 특성 상 다양한 성상으로 존재하며, EAFD 내 원소의 광물학적 존재 형태에 따라 공정 변수가 달라진다. 따라서 최근은 EAFD 성상을 고려하여 아연과 철의 회수율을 높이는 다 단계 습식공정에 대한 연구가 활발히 진행 중이다. 본 연구에서는 전기로 제강분진 내 아연과 철의 분리 회수를 위한 다단계 공정 중 산 용출을 통해 아연을 회수한 후 남은 잔여물(residues)을 대상으로 자석을 이용하여 철 성분의 선택 분리 효과에 미치는 영향을 평가하였다. 아연 회수 후 잔여물의 철 함량을 높일 수 있다면 전기제강로로 재투입하여 제강원료로의 재사용이 가능하다. 자석분리 공정을 통하여 분리된 고체물질에는 고액비에 관계없이 85%의 철이 회수되는 것으로 나타났다. 이에 반해 칼슘은 고액비에 영향을 받았으며 고액비(kg/L)가 20일 때 약 85%의 칼슘이 분리되었다. 또한 자석분리공정은 황산칼슘 및 황산납의 분리에도 효과적임을 확인하였다. 이 공정을 통해 아연 회수 후 분진 잔여물의 철 순도를 높여 전기제강로로 재투입하여 아연 회수 뿐 아니라 분진 중 철의 재활용 또한 가능하게 할 것으로 보인다.
In this study the optimum conditions for recovery of valuable metal in Electric Arc Furnace Dusts were investigated. 2M of H2SO4, 1~5 of solid/liquid ratio, 0~180 min of leaching time has been established for leaching condition, and for electrowinning, each of Pt, C, Zn, Pb anode and Zn, Cu cathode was compared respectively at pH 2, 4 and 6. The result of elemental analysis of Zn crystal, a lagre quantity of Fe and H has been observed with Zn and other heavy metal, therefore, impurities removing process would be requir for enhancing purity of Zn. As the result, about 60% of Zn has been recovered under condition of 2 M of H2SO4, 1:2 of S/L ratio at 120 min, and Pt or Pb for anode, Zn for cathode has been shown the highest efficiency of electrowinning at pH 6.
Hydrometallurgical process, which is one of the recycling method of EAFD in zinc, is a process to recover metallic crystal form that deposited on the cathod through electrolytic extraction by leaching valuable metals in appropriate solvent. Still, there is a lot of variable at electrowinning process, such as initial pH, space between electrode, voltage, current, cathod, or anode, Thus, many studies have been conducted previously. In this study, the consideration of optimistic condition in electrowinning process to recover the valuable metal in EAFD have been carried. The extraction amount by changing pH shows increase according to high initial pH, also, the alteration of extraction amount by controling the space between electrode, voltage or current has been measured. The difference of efficiency represent by decrease of electromotive force, sudden loss of voltage under specific condition, and using platinum as electrode shows most stable extraction. Furthermore, when distance between electrode are too close, the extracted zinc contact with anode, which make recovery difficult. The analysis result of zinc metallic crystal which been recovered draws spherical and cylindrical shapes are scattered and mixed, and consequence of EDX, content of zinc appear about 60%.
This study was performed to develop the biological treatment technology of wastewater polluted with heavy metals. Zinc-tolerant microorganism, such as Pseudomonas chlororaphis which possessed the ability to accumulate zinc, was isolated from industrial wastewaters polluted with various heavy metals. The characteristics of zinc accumulation in the cells, recovery of the zinc from the cells accumulating zinc, were investigated.
Removal rate of zinc from the solution containing 100 ㎎/ℓ of zinc by zinc-tolerant microorganism was more than 90% at 48 hours after inoculation of the microorganisms.
A large number of the electron-dense granules were found mainly on the cell wall and membrane fractions, when determined by transmission electron microscope. Energy dispersive X-ray spectroscopy revealed that the electron-dense granules were zinc complex with the substances binding heavy metals.
The zinc accumulated into cells was not desorbed by distilled water, but more than 80% of the zinc accumulated was desorbed by 0.1M-EDTA. The residues of the cells after combustion at 550℃ amounted to about 21% of the dry weight of the cells. EDS analysis showed that the residues were comparatively pure zinc compounds containing more than 79% of zinc.