검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 182

        1.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The system of rice intensification (SRI) has been proposed as a way of transitioning towards more sustainable rice farming. In rainfed rice farming, however, various environmental constraints often make SRI practices challenging to adopt. We conducted an on-farm experiment in 30 rainfed lowland fields to examine the technical efficacy of SRI in southern Cambodia during the wet seasons of over three years of 2012, 2013, and 2015. Across the three years, the SRI practices produced significantly greater plant biomass and grain yield than non-SRI. We ascribed the yield increase to the increased number of grains per land area as the increased number of spikelets per panicle rather than the number of panicles per land area. With no significant difference in seedling age between the SRI and the non-SRI, we attributed the more substantial number of grains per panicle to the reduced planting density, increased manure application, and reduced amount of inorganic fertilizers in SRI fields. Our results suggest that the advantage of the SRI lies in the efficient use of internally available soil nutrients, whose mechanisms need quantitative understanding through future studies.
        4,500원
        2.
        2023.11 구독 인증기관·개인회원 무료
        Over the years, in the field of safety assessment of geological disposal system, system-level models have been widely employed, primarily due to considerations of computational efficiency and convenience. However, system-level models have their limitations when it comes to phenomenologically simulating the complex processes occurring within disposal systems, particularly when attempting to account for the coupled processes in the near-field. Therefore, this study investigates a machine learning-based methodology for incorporating phenomenological insights into system-level safety assessment models without compromising computational efficiency. The machine learning application targeted the calculation of waste degradation rates and the estimation of radionuclide flux around the deposition holes. To develop machine learning models for both degradation rates and radionuclide flux, key influencing factors or input parameters need to be identified. Subsequently, process models capable of computing degradation rates and radionuclide flux will be established. To facilitate the generation of machine learning data encompassing a wide range of input parameter combinations, Latin-hypercube sampling will be applied. Based on the predefined scenarios and input parameters, the machine learning models will generate time-series data for the degradation rates and radionuclide flux. The time-series data can subsequently be applied to the system-level safety assessment model as a time table format. The methodology presented in this study is expected to contribute to the enhancement of system-level safety assessment models when applied.
        4.
        2023.06 구독 인증기관 무료, 개인회원 유료
        At present, the assessment for the crew training using the ship handling simulator is completed by the assessor, which is subjective and difficult to unify the assessment criteria. Under this assessment mode, the assessor will have a great work intensity. So it is necessary to design and develop the automatic assessment system for the ship handling simulator. This paper introduces the automatic assessment system developed by Dalian Maritime University (shorted for DMU), which includes the assessment method, system architecture and implementation. A selected example of applications is described.
        4,000원
        5.
        2023.05 구독 인증기관·개인회원 무료
        The timescale of safety assessment for a geological disposal system is considered up to hundreds of thousands of years when the radionuclides in spent nuclear fuel decay to levels comparable to natural radioactivity. During this long period, a variety of climate changes are expected to occur, including variations in temperature and precipitation as well as long-term sea level changes and glacial cycles. These climate changes can either directly affect water balance components or indirectly affect water balance by altering terrain and vegetation that have an impact on water balance. Water balance is a significant element of safety assessment, because it affects the radionuclide transport via groundwater flow, which in turn affects the radiological risk to humans and other biotas. Therefore, it is important to understand the hydrologic response to climate changes for proving the long-term safety of the disposal system. To this end, this study performed hydrological simulations using the SWAT (Soil and Water Assessment Tool) for several climate change scenarios. SWAT is the watershed-scale hydrological model developed by the USDA-ARS (United States Department of Agriculture - Agricultural Research Service) and has been widely used to quantify the water balance in a watershed. It calculates the hydrologic cycle based on the water balance equation with different physical processes for water balance components such as evapotranspiration, surface runoff, and groundwater recharge. This study assumed several climate change scenarios (e.g., variations in temperature and precipitation, sea level change, and formation of permafrost) and analyzed how the components of the water balance would respond under different scenarios and which scenarios would have the greatest impact on the water balance. These findings can provide valuable insights for future long-term safety assessments on the Korean Peninsula and can also be used as input data for the biosphere module of APro (Adaptive process-based total system performance assessment framework).
        6.
        2023.05 구독 인증기관·개인회원 무료
        In the engineered barrier system of deep geological disposal repository, complex physicochemical phenomena occur throughout the entire disposal time, consequently impacting the safety function. The bentonite buffer, a significant component of the engineered barrier system, can be geochemically altered due to the changes in host rock groundwater, temperature, and redox condition. Such changes may have direct or indirect effects on radionuclide migration in case of canister failure. Therefore, a modeling tool that accounts for coupled thermal-hydraulic-mechanical-chemical (THMC) processes is necessary for the safety assessment. To this end, the Korea Atomic Energy Research Institute (KAERI) has developed the APro, a modeling interface for conducting safety assessment of deep geological disposal repository. The APro considers coupled THMC processes that influence radionuclide migration. Here, the solute transport considering thermal and hydraulic processes are calculated using the COMSOL multi-physics, while geochemical reactions are carried out in PHREEQC. The two software are coupled using a sequential non-iterative operator splitting approach, and transport of non-water H, non-water O, and charge were additionally considered to enhance the coupling model stability. Finally, the applicability of APro to simulate long-term geochemical evolution of bentonite was demonstrated through benchmark studies to evaluate the effects of mineral precipitation/dissolution, temperature, redox, and seawater intrusion.
        7.
        2023.05 구독 인증기관·개인회원 무료
        Since the first operation of the Gori No. 1 nuclear power plant in Korea was started to operate in 1978, currently 24 nuclear power plants have been being operated, out of which 21 plants are PWR types and the rest are CANDU types. About 30% of total electricity consumed in Korea is from all these nuclear power plants. The accumulated spent nuclear fuels (SNFs) generated from each site are temporarily being stored as wet or dry storage type at each plant site. These SNFs with their high radiotoxicity, heat generating, and long-lived radioactivity are currently the only type of high-level radioactive waste (HLW) in Korea, which urgently requires to be disposed of in deep geological repository. Studies on disposal of HLW in various kind of geological repositories have been carried out in such countries as Sweden, Finland, United States, and etc. with their own management policies in consideration of their situations. In Korea long-term R&D research program for safe management of SNF has also been conducted during last couple of decades since around 1997, during which several various type of disposal concepts for disposal of SNFs in deep geological formations have been investigated and developed. The first concept developed was KAERI Reference Disposal System (KRS) which is actually very much similar to Swedish KBS-3, a famous concept of direct disposal of SNF in stable crystalline rock at a depth of around 500 m which has been regarded as one of the most plausible method worldwide to direct disposal of SNF. The world first Finnish repository will be also this type. Since the characteristics of SNF discharged from domestic nuclear reactors have been changed and improved, and burnup has sometimes increased, a more advanced deep geological repository system has been needed, KRS-HB (KRS with High Burnup SNF) has been developed and in consideration of the dimensions of SNFs and the cooling period at the time point of the disposal time, KRS+, a rather improved disposal concept has also been subsequently developed which is especially focused on the efficient disposal area. Recently research has concentrated on rather advanced disposal technology focused on a safer and more economical repository system in recent view of the rapidly growing amount of accumulated SNF. Especially in Korea the rock mass and the footprint area for the repository extremely limited for disposal site. Some preliminary studies to achieve rather higher efficiency repository concept for disposal of SNF recently have already been emphasized. Among many possible ones for consideration of design for high-efficiency repository system, a double-layered system has been focused which is expected to maximize disposal capacity within the minimum footprint disposal area. Based on such disposal strategy a rather newly designed performance assessment methodology might be required to show long-term safety of the repository. Through the study some prerequisites for such methodological development will be roughly checked and investigated, which covers FEP identification and pathway and scenario analyses as well as preliminary conceptual modeling for the nuclide release and transport in near-field, far-field, and even biosphere in and around the conceptual repository system.
        9.
        2023.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Various linear system solvers with multi-physics analysis schemes are compared focusing on the near-field region considering thermal-hydraulic-chemical (THC) coupled multi-physics phenomena. APro, developed at KAERI for total system performance assessment (TSPA), performs a finite element analysis with COMSOL, for which the various combinations of linear system solvers and multi-physics analysis schemes should to be compared. The KBS-3 type disposal system proposed by Sweden is set as the target system and the near-field region, which accounts for most of the computational burden is considered. For comparison of numerical analysis methods, the computing time and memory requirement are the main concerns and thus the simulation time is set up to one year. With a single deposition hole problem, PARDISO and GMRESSSOR are selected as representative direct and iterative solvers respectively. The performance of representative linear system solvers is then examined through a problem with an increasing number of deposition holes and the GMRES-SSOR solver with a segregated scheme shows the best performance with respect to the computing time and memory requirement. The results of the comparative analysis are expected to provide a good guideline to choose better numerical analysis methods for TSPA.
        4,000원
        10.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        지구 대기에 영향을 주는 거의 모든 인간활동과 자연현상을 수치적으로 담아내는 지구시스템모델은 기후 위기 의 시대에 활용될 가장 진보한 과학적 도구이다. 특히 우리나라 기상청이 도입한 지구시스템모델인 Unified Model (UM)은 지구 대기 연구의 과학적 도구로써 매우 활용성이 높다. 하지만 UM은 수치 적분과 자료 저장에 방대한 자원 이 필요하여 개별 연구자들은 최근까지도 기상청 슈퍼컴퓨터에만 UM을 가동하는 상황이다. 외부와 차단된 기상청 슈 퍼컴퓨터만을 이용하여 모델 연구를 수행하는 것은 UM을 이용한 모형 개선과 수치 실험의 원활한 수행에 있어 효율성이 떨어진다. 본 연구는 이러한 한계점을 극복할 수 있도록 개별 연구자가 보유한 고성능 병렬 컴퓨터(리눅스 클러스터) 에서 최신 버전 UM을 원활하게 설치하여 활용할 수 있도록 UM 시스템 환경 구축 과정과 UM 모델 설치 과정을 구 체적으로 제시하였다. 또한 UM이 성공적으로 설치된 리눅스 클러스터 상에서 N96L85과 N48L70의 두 가지 모형 해 상도에 대하여 UM 가동 성능을 평가하였다. 256코어를 사용하였을 때, 수평으로 1.875o ×1.25o(위도×경도)와 수직으로 약 85 km까지 85층 해상도를 가진 N96L85 해상도에 대한 UM의 AMIP과 CMIP 타입 한 달 적분 실험은 각각 169분 과 205분이 소요되었다. 저해상도인 3.75o ×2.5o와 70층 N48L70 해상도에 대해 AMIP 한달 적분은 252코어를 사용하여 33분이 소요되는 적분 성능을 보였다. 또한 적분을 위해 사용된 코어의 개수에 비례하여 적분 성능이 향상되었다. 성능 평가 외에 29년 간의 장기 적분을 수행하여 과거 지상 2-m 온도와 강수 강도를 ERA5 재분석자료와 비교하였고, 해상 도에 따른 차이도 정성적으로 살펴보았다. 재분석자료와 비교할 때, 공간 분포가 유사하였고, 해상도와 대기-해양 접합 에 따라 모의 결과에서 차이가 나타났다. 본 연구를 통해 슈퍼컴퓨터가 아닌 개별 연구자의 고성능 리눅스 클러스터 상에서도 UM이 성공적으로 구동됨을 확인하였다.
        5,700원
        11.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study focused on diagnosing and analyzing the level of sustainable development for each fishing communities by applying the sustainable development index in the fishing communities to support the policy of revitalizing the fishing communities. In terms of methodology, diagnostic indicators for rural areas were used through previous studies and literature surveys, and three categories, five fields and 27 indicators were finally selected through collecting opinions from experts. After deriving the weight for each indicator in detail, the final sustainable development index of the fishing communities was applied to fishing village fraternity. Based on the results of the analysis of the application of sustainable development cases in fishing communities, policy support should be implemented differentially according to regional decline factors and potential growth factors. In the population and social sector, it is necessary to consider ways to reduce population and reduce aging. In the industrial and economic sectors, fishing activation and systematic support for fishing-related industries should be provided. In the marine and built environment sector, the government's active project execution and budget support are required. In addition, it is expected to be used in various ways in the process of developing fishing communities and establishing revitalization plans that reflect the characteristics of the region.
        6,000원
        12.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the construction of tall buildings utilized by high strength-concrete in the whole world is tending to be on the rise. The application of high-rise structural system in buildings results in the excellent cut-down effect in construction materials due to section reduction. Therefore, in order to investigate the CO2 and resource reduction effect for the high-rise structural system, comparisons of GWP and ADP in embodied energy of structural materlais between 4 type of high-rise structural system have been performed. As a result, GWP emission increased in the order of steel structure outrigger system, RC shear wall system, and RC outrigger system. On the other hand, ADP emissions increased in the order of RC shear wall system, RC outrigger system, and steel structure outrigger system.
        4,000원
        14.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In terms of habitat conservation, it is essential to develop a habitat assessment system that can evaluate not only the suitability of the current habitat, but also the health and stability of the habitat. This study aimed to develop a methodology of habitat quality assessment for endangered species by analyzing various existing habitat assessment methods. The habitat quality assessment consisted of selecting targeted species, planning of assessment, selecting targeted sites, assessing performance, calculating grade, and expert verification. Target sites were selected separately from core and potential habitats using a species distribution model or habitat suitability index. Habitat assessment factors were classified into ecological characteristic, landscape characteristic, and species-habitat characteristic. Ecological characteristic consisted of thirteen factors related to health of tree, vegetation, and soil. Landscape characteristic consisted of five factors related to fragment and connectivity of habitat. Species-habitat characteristic consisted of factors for evaluating habitat suitability depending on target species. Since meanings are different depending on characteristics, habitat quality assessment of this study could be used by classifying results for each characteristic according to various assessment purposes, such as designation of alternative habitats, assessment of restoration project, and protected area valuation for endangered species. Forest habitat quality assessment is expected to play an important role in conservation acts of endangered species in the future through continuous supplementation of this system in regard to quantitative assessment criteria and weighting for each factor with an influence.
        4,000원
        15.
        2022.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This work provided a review of three techniques—(1) spectrochemical, (2) electrochemical, and (3) spectroelectrochemical– for molten salt medias. A spectroelectrochemical system was designed by utilizing this information. Here, we designed a spectroelectrochemical cell (SEC) and calibrated temperature controllers, and performed initial tests to explore the system’s capability limit. There were several issues and a redesign of the cell was accomplished. The modification of the design allowed us to assemble, align the system with the light sources, and successfully transferred the setup inside a controlled environment. A preliminary run was executed to obtain transmission and absorption background of NaCl-CaCl2 salt at 600°C. It shows that the quartz cuvette has high transmittance effects across all wavelengths and there were lower transmittance effects at the lower wavelength in the molten salt media. Despite a successful initial run, the quartz vessel was mated to the inner cavity of the SEC body. Moreover, there was shearing in the patch cord which resulted in damage to the fiber optic cable, deterioration of the SEC, corrosion in the connection of the cell body, and fiber optic damage. The next generation of the SEC should attach a high temperature fiber optic patch cords without introducing internal mechanical stress to the patch cord body. In addition, MACOR should be used as the cell body materials to prevent corrosion of the surface and avoid the mating issue and a use of an adapter from a manufacturer that combines the free beam to a fiber optic cable should be incorporated in the future design.
        5,700원
        16.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The rate of industrial accident reduction is slowing down as the attention of the Ministry of Employment and Labor and related agencies on risk assessment systems decreased. this paper focuses on weakness of legal system for the risk assessment in recent years. A survey was conducted to identify the status and condition of the risk assessment system applying on small and medium-sized manufacturing companies. A set of questionnaires is designed to reflect various perspectives of the companies regarding the problems and solutions of the system. The results refer that differentiated instructions and support systems in response to the actual conditions of the companies are mandatory to reinforce the efficiency of risk assessment system.
        4,000원
        17.
        2022.05 구독 인증기관·개인회원 무료
        Since the commercial operation of Kori unit 1 in 1978, nuclear power has provided cheap, stable and clean electricity in South-Korea. For decades, the discussion about the spent fuel management has been dominated and the government is responsible for on-going research and development (R&D) related to long-term spent nuclear fuel management. The effective management of spent fuel should be applied from the early stage of the R&D process to licensing phases with the step-by-step evaluation system. As part of follow-up efforts after the Fukushima nuclear accident, the Nuclear Promotion Commission and Nuclear Safety Commission were divided in function as an independent agency for enhancing national nuclear safety and security, which aims to protect the public and environment from undue radiological hazard. The national spent fuel project must have a vibrant program for spent fuel management. Due to the nature of these projects, the establishment of a ‘conformity assessment’ system that collects the opinions from the licensing organisations on the results of research projects from the initial R&D stage should be applied advertently in order to efficiently conduct research projects and enhance public confidence. For the government-led project for spent nuclear fuel management, the adequacy and applicability of its technology R&D as well as its sustainability that includes financial, social and environmental performance measures should be evaluated in each stage. The institutionalisation arrangement, so called ‘conformity assessment system’ for the development of a national spent nuclear fuel management plan and related technology should be developed. This study aims to propose the basic principles for the introduction of the conformity assessment system: (1) national management responsibility, (2) spent fuel management project scope, (3) its management main principles, (4) project implementation system, (5) final management project scope and securing financial resources.
        1 2 3 4 5