검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 31

        2.
        2023.11 구독 인증기관·개인회원 무료
        The radwaste repository consists of a multi-barrier, including natural and engineered barriers. The repository’s long-term safety is ensured by using the isolation and delay functions of the multi-barrier. Among them, natural barriers are difficult to artificially improve and have a long time scale. Therefore, in order to evaluate its performance, site characteristics should be investigated for a sufficient period using various analytical methods. Natural barriers are classified into lithological and structural characteristics and investigated. Structural factors such as fractures, faults, and joints are very important in a natural barrier because they can serve as a flow path for groundwater in performance evaluation. Considering the condition that the radioactive waste repository should be located in the deep part, the drill core is an important subject that can identify deep geological properties that could not be confirmed near the surface. However, in many previous studies, a unified method has not been used to define the boundaries of structural factors. Therefore, it is necessary to derive a method suitable for site characteristics by applying and comparing the boundary definition criteria of various structural factors to boreholes. This study utilized the 1,000 m deep AH-3 and DB-2 boreholes and the 500 m deep AH-1 and YS- 1 boreholes drilled around the KURT (KAERI Underground Research Tunnel) site. Methods applied to define the brittle structure boundary include comparing background levels of fracture and fracture density, excluding sections outside the zone of influence of deformation, and confining the zone to areas of concentrated deformation. All of these methods are analyzed along scanlines from the brittle structure. Deriving a site-specific method will contribute to reducing the uncertainties that may arise when analyzing the long-term evolution of brittle structures within natural barriers.
        3.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 평활화 유한요소법(Smoothed finite element method)을 도입한 위상분야법(Phase-field method)에 대해 소개하고자 한다. 위상분야법은 최근 균열 개시 및 전파 해석에 많이 사용되는 기법으로 균열 표면을 추적하기 위한 추가적인 처리기법이 필요하 지 않는 특징이 있다. 위상분야법에서 복잡한 균열 전파를 포착하기 위해 높은 정확도의 변형률 에너지를 평활화 유한요소법을 도입 하여 계산하였다. 평활화 유한요소법은 유한요소를 하위 셀로 나누고 각각의 하위 셀을 평활화 영역으로 재조립하여 변형률 에너지 를 계산하게 된다. 또한 해석 시간 단축을 위하여 쿼드트리 요소망을 제안한 기법에 사용하였다. 수치 예제를 통하여 제안한 기법을 참 조해 및 유한요소법과 비교하여 검증하였다.
        4,200원
        4.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study introduces a newly discovered brittle star, Amphiophiura megapoma, from the mesophotic zone in the East Sea, Korea. It is the second species belonging to the genus Amphiophiura (which includes 57 species) to be recorded in Korean waters after A. sculpta. The specimen was discovered during a September 2022 survey, by SCUBA diving in the upper mesophotic zone of the East Sea, Korea. This study presents the morphological characteristics of A. megapoma, highlighting its differences from the related species within a comprehensive taxonomic description. It provides highresolution images of A. megapoma and a taxonomic key for Amphiophiura species in Korea.
        4,000원
        5.
        2023.05 구독 인증기관·개인회원 무료
        The acoustic emission (AE) method as a passive non-destructive monitoring technique is proposed for real-time monitoring of mechanical degradation in underground structures, such as deep geological disposal of high-level nuclear waste (HLW). This study investigates the low-frequency characteristics of AE signals emitted during the fracturing of meter-scale concrete specimens; uniaxial compression tests (UCT) in a lab scale and Goodman jack (GJ) tests in a 1.3 m-long concrete block were conducted while acquiring the AE signals using low-frequency AE sensors. The results indicate a sharp increase in AE energy emission at approximately 60% and 80% of the yield stresses in the UCT and GJ tests, respectively. The collected AE signals were primarily found in two frequency bands: the 4-28 kHz range and the 56-80 kHz range. High-frequency AE signals were captured more as the stress increased in the GJ tests, which was in contrast to the UCT tests. Furthermore, the AE signals obtained from the Goodman jack tests tended to lower RA values than the UCT results. This study presents unique experimental data with low-frequency AE sensors under different loading conditions, which provides insights into field-scale AE monitoring practices.
        7.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we investigate the deformation behavior of Hf44.5Cu27Ni13.5Nb5Al10 metallic glass powder under repeated compressive strain during mechanical milling. High-density (11.0 g/cc) Hf-based metallic glass powders are prepared using a gas atomization process. The relationship between the mechanical alloying time and microstructural change under phase transformation is evaluated for crystallization of the amorphous phase. Planetary mechanical milling is performed for 0, 40, or 90 h at 100 rpm. The amorphous structure of the Hf-based metallic glass powders during mechanical milling is analyzed using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Microstructural analysis of the Hf-based metallic glass powder deformed using mechanical milling reveals a layered structure with vein patterns at the fracture surface, which is observed in the fracture of bulk metallic glasses. We also study the crystallization behavior and the phase and microstructure transformations under isothermal heat treatment of the Hf-based metallic glass.
        4,000원
        8.
        2015.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The ductile-brittle transition behavior of two austenitic Fe-18Cr-10Mn-N-C alloys with different grain sizes was investigated in this study. The alloys exhibited a ductile-brittle transition behavior because of an unusual brittle fracture at low temperatures unlike conventional austenitic alloys. The alloy specimens with a smaller grain size had a higher yield and tensile strengths than those with a larger grain size due to grain refinement strengthening. However, a decrease in the grain size deteriorated the low-temperature toughness by increasing the ductile-brittle transition temperature because nitrogen or carbon could enhance the effectiveness of the grain boundaries to overcome the thermal energy. It could be explained by the temperature dependence of the yield stress based on low-temperature tensile tests. In order to improve both the strength and toughness of austenitic Fe-Cr-Mn-N-C alloys with different chemical compositions and grain sizes, more systematic studies are required to understand the effect of the grain size on the mechanical properties in relation to the temperature sensitivity of yield and fracture stresses.
        4,000원
        9.
        2015.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, low-carbon hypoeutectoid steels with different ferrite-pearlite microstructures were fabricated byvarying transformation temperature. The microstructural factors such as pearlite fraction and interlamellar spacing, and cementitethickness were quantitatively measured and then Charpy impact tests conducted on the specimens in order to investigate thecorrelation of the microstructural factors with impact toughness and ductile-brittle transition temperature. The microstructuralanalysis results showed that the pearlite interlamellar spacing and cementite thickness decreases while the pearlite fractionincreases as the transformation temperature decreases. Although the specimens with higher pearlite fractions have low absorbedenergy, on the other hand, the absorbed energy is higher in room temperature than in low temperature. The upper-shelf energyslightly increases with decreasing the pearlite interlamellar spacing. However, the ductile-brittle transition temperature is hardlyaffected by the pearlite interlamellar spacing because there is an optimum interlamellar spacing dependent on lamellar ferriteand cementite thickness and because the increase in pearlite fraction and the decrease in interlamellar spacing with decreasingtransformation temperature have a contradictory role on absorbed energy.
        4,000원
        10.
        2015.04 구독 인증기관·개인회원 무료
        To evaluate system reliability of a composite structure consisting of more than two structural members, it is necessary to identify that the members are connected to each others in parallel or in serial. Especially for parallel composite system, it is also necessary to confirm that mechanical properties of materials for the members are brittle or ductile. For parallel system of brittle materials, if one part fails, that part cannot resist load anymore and the whole load transfers to the other part. However, for parallel system of perfectly plastic materials, if one part fails, that part can maintain the amount of its maximum load capacity and the remaining load transfers to the other part. In this study, a methodology to determine reliability index for composite structures consisting of quasi-brittle materials. By assuming quasi-brittle materials as brittle or perfectly plastic materials, the upper and lower bounds of the reliability index can be determined. The reliability index for parallel system of quasi-brittle materials is then determined by interpolating the upper and lower bounds indices using ductility number extracted from stress-strain curves of quasi-brittle materials.
        11.
        2014.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In order to clarify the effect of Nb addition on the ductile-brittle transition property of sintered TiC, TiC-10 mol% Nb composites were researched using a three-point bending test at temperatures from room temperature to 2020 K, and the fracture surface was observed by scanning electron microscopy. It was found that the Nb addition decreases the ductile-brittle transition temperature of sintered TiC by 300 K and increases the ductility. The room temperature bending strength was maintained at up to 1800 K, but drastically dropped at higher temperatures in pure TiC. The strength increased moderately to a value of 320MPa at 1600 K in TiC-10 mol% Nb composites, which is 40% of the room temperature strength. Pores were observed in both the grains and the grain boundaries. It can be seen that, as Nb was added, the size of the grain decreased. The ductile-brittle transition temperature in TiC-10 mol% Nb composites was determined to be 1550 K. Above 1970 K, yieldpoint behavior was observed. When the grain boundary and cleavage strengths exceed the yield strength, plastic deformation is observed at about the same stress level in bending as in compression. The effect of Nb addition is discussed from the viewpoint of ability for plastic deformation.
        4,000원
        12.
        2013.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of interstitial elements on the ductile-brittle transition behavior of austenitic Fe-18Cr-10Mn-2Ni alloys with different nitrogen and carbon contents was investigated in this study. All the alloys exhibited ductile-brittle transition behavior because of unusual low-temperature brittle fracture, even though they have a faced-centered cubic structure. With the same interstitial content, the combined addition of nitrogen and carbon, compared to the sole addition of nitrogen, improved the low-temperature toughness and thus decreased the ductile-brittle transition temperature (DBTT) because this combined addition effectively enhances the metallic component of the interatomic bonds and is accompanied by good plasticity and toughness due to the increased free electron concentration. The increase in carbon content or of the carbon-to-nitrogen ratio, however, could increase the DBTT since either of these causes the occurrence of intergranular fracture that lead to the deterioration of the toughness at low temperatures. The secondary ion mass spectroscopy analysis results for the observation of carbon and nitrogen distributions confirms that the carbon and nitrogen atoms were significantly segregated to the austenite grain boundaries and then caused grain boundary embrittlement. In order to successfully develop austenitic Fe-Cr-Mn alloys for low-temperature application, therefore, more systematic study is required to determine the optimum content and ratio of carbon and nitrogen in terms of free electron concentration and grain boundary embrittlement.
        4,000원
        13.
        2013.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The influence of Cu and Ni on the ductile-brittle transition behavior of metastable austenitic Fe-18Cr-10Mn-N alloys with N contents below 0.5 wt.% was investigated in terms of austenite stability and microstructure. All the metastable austenitic Fe-18Cr-10Mn-N alloys exhibited a ductile-brittle transition behavior by unusual low-temperature brittle fracture, irrespective of Cu and/or Ni addition, and deformation-induced martensitic transformation occasionally occurred during Charpy impact testing at lower temperatures due to reduced austenite stability resulting from insufficient N content. The formation of deformation-induced martensite substantially increased the ductile-brittle transition temperature(DBTT) by deteriorating low-temperature toughness because the martensite was more brittle than the parent austenite phase beyond the energy absorbed during transformation, and its volume fraction was too small. On the other hand, the Cu addition to the metastable austenitic Fe-18Cr-10Mn-N alloy increased DBTT because the presence of δ-ferrite had a negative effect on low-temperature toughness. However, the combined addition of Cu and Ni to the metastable austenitic Fe-18Cr-10Mn-N alloy decreased DBTT, compared to the sole addtion of Ni or Cu. This could be explained by the fact that the combined addition of Cu and Ni largely enhanced austenite stability, and suppressed the formation of deformation-induced martensite and δ-ferrite in conjunction with the beneficial effect of Cu which may increase stacking fault energy, so that it allows cross-slip to occur and thus reduces the planarity of the deformation mechanism.
        4,000원
        14.
        2012.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 섬유강화 복합재에 대해 균질화법과 접목된 페리다이나믹 전산해석 방법론을 제시하였다. 복합재료에 대 해 제시된 해석모델로 동적 취성 파괴 및 손상해석을 수행하였다. Coker 등(2001)에서 제시된 비대칭 하중 하의 섬유강화 복합재의 동적 파괴 실험결과와 비교하여 페리다이나믹 비국부 해석모델이 다양한 동적 파괴특성 및 극초음속으로 균열이 진전되는 것을 잘 모사할 수 있음을 검증하였다. 또한 대칭 하중조건에 대한 해석결과와 비교하여 비대칭 하중이 더 높은 균열전파 속도를 유발하는 것을 확인하였다. 수치해석 결과들이 실험 결과들에 부합함을 또한 확인하였다.
        4,000원
        15.
        2010.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The crack initiation equals to fracture for bonded joint with brittle adhesive. The criterion is formulated in terms of the quasi-stress intensity factor Kp, for the maximum principle stress, that is analogous to the stress intensity factor used to characterize the stress field in the vicinity of bond terminus. Kp is evaluated using a boundary element analysis. The crack initiation at the terminus of adhesive bonded joints is estimated with the critical quasi-stress intensity factor Kp. This method presented here hardly pays attention to the crack propagation. Since there is a large influence of crack propagation on the strength of adhesive joints and structures, crack propagation must be taken into account on strength prediction of bonded joints. The quasi-stress intensity factor Kp for the maximum principle stress can use as the criteria of the crack initiation at the terminus of adhesive bonded joints having various shapes.
        4,000원
        1 2