The conventional multi-scale modelling approach that predicts carbon nanotube (CNT) growth region in heterogeneous flame environment is computationally exhaustive. Thus, the present study is the first attempt to develop a zero-dimensional model based on existing multi-scale model where mixture fraction z and the stoichiometric mixture fraction zst are employed to correlate burner operating conditions and CNT growth region for diffusion flames. Baseline flame models for inverse and normal diffusion flames are first established with satisfactory validation of the flame temperature and growth region prediction at various operating conditions. Prior to developing the correlation, investigation on the effects of zst on CNT growth region is carried out for 17 flame conditions with zst of 0.05 to 0.31. The developed correlation indicates linear ( zlb=1.54zst +0.11) and quadratic ( zhb=zst(7-13zst )) models for the zlb and zhb corresponding to the low and high boundaries of mixture fraction, respectively, where both parameters dictate the range of CNT growth rate (GR) in the mixture fraction space. Based on the developed correlations, the CNT growth in mixture fraction space is optimum in the flame with medium-range zst conditions between 0.15 and 0.25. The stronger relationship between growth-region mixture-fraction (GRMF) and zst at the near field region close to the flame sheet compared to that of the far field region away from the flame sheet is due to the higher temperature gradient at the former region compared to that of the latter region. The developed models also reveal three distinct regions that are early expansion, optimum, and reduction of GRMF at varying zst.
Mechanically enhanced supramolecular carbon nanotube (CNT) films were prepared in water by employing the π-electronrich phenyl, naphthalenyl, and pyrenyl end-functionalized polyethylene oxides (PEOs) as supramolecular linkers, followed by vacuum filtration. Among them, the supramolecular CNT film produced by the pyrenyl end-functionalized PEO (PEOPy) exhibited the highest mechanical strength, which was ~ 1.5–2 times higher than that of the CNT films produced using the typical dispersant, Triton X-100, although the functionality of PEO-Py was lower than that prepared using other linkers, and the content of PEO-Py in the CNT films was lower than that obtained using Triton X-100. Fluorescence and UV–Vis spectroscopy demonstrated that the improved mechanical properties of the supramolecular CNT film result from the formation of π–π interactions between the CNT and the pyrene moieties of the PEO-Py linker. Finally, the supramolecular CNT film exhibited a 40–50 dB electromagnetic shielding efficiency through hybridization with silver nanowires.
Titanium dioxide (TiO2) particles deposited on different quantitative Fe-treated carbon nanotube (CNT) composites with high photocatalytic activity of visible light were prepared by a modified sol-gel method using TNB as a titanium source. The composites were characterized by BET, XRD, SEM, TEM and EDX, which showed that the BET surface area was related to the adsorption capacity for each composite. From TEM images, surface and structural characterization of for the CNT surface had been carried out. The XRD results showed that the Fe-ACF/TiO2 composite mostly contained an anatase structure with a Fe-mediated compound. EDX results showed the presence of C, O, and Ti with Fe peaks in the Fe-CNT/TiO2 composites. The photocatalytic activity of the composites was examined by degradation of methylene blue (MB) in aqueous solution under visible light, which was found to depend on the amount of CNT. The highest photocatalytic activity among the different composites was related to the optimal content of CNT in the Fe-CNT/TiO2 composites. In particular, the photocatalytic activity of the Fe-CNT/TiO2 composites under visible light was better than that of the CNT/TiO2 composites due to the introduction of Fe particles.
Carbon nanotube (CNT) cathodes were fabricated using nano-sized silver (Ag) powders as a bonding material between the CNTs and cathode electrodes. The effects of the powder size on the sintering behavior, the current density and emission image for CNT cathodes were investigated. As the diameter of the Ag powders decreases to 10 nm, the sintering temperature of the CNT cathode was lowered primarily due to the higher specific surface area of the Ag powders. In this study, it was demonstrated that nano-sized Ag powders can be feasibly used as a bonding material for a screen-printed CNT cathode, yielding a high current density and a uniform emission image.
This research uses carbon nanotubes (CNTs) that are actively used to develop convenient and systematic management of building blocks and structural performance monitoring, away from the difficulties of structural health monitoring such as RC structures. The change in electrical resistance was evaluated according to the amount of load and compressive load. Experiments were carried out with 1.0% and 2.0% CNT, and 30% and 60% compressive strength, respectively. Experimental results show that the compressive strength of CNT 2.0% is lower than the compressive strength of CNT 1.0% but is more sensitive to changes in electrical resistance due to compressive load.
In this study, the rate of change of electrical resistance with respect to the strength and load of cement composites was investigated by incorporating Carbon Nanotube(CNT) at 0.25, 0.5, 0.75, 1.0% of the binder weight. Compressive strength test It was shown that the load of 30% was repeatedly applied to impart conductivity through the rate of change of electrical resistance. The incorporation rate of CNT greatly affected the compressive strength and the rate of change of electrical resistance.
24% in Energy of total power consumption is spending for structures, and especially the parts of spending energy for structure, home industry, is increasing more than industry part. That is why causes greenhouse gas. This paper suggests that fossil fuel replaces alternative fuel which is new fusion cement with CNT which has heat conductivity and electrical properties.