Asarum sieboldii Miq. (Aristolochiaceae) is a perennial herbaceous plant and has been used as traditional medicine for treating diseases, cold, fever, phlegm, allergies, chronic gastritis, and acute toothaches. Also, it has various biological activities, such as antiallergic, antiinflammatory, antinociceptive, and antifungal. However, the anticancer effect of A. sieboldii have been rarely reported, except anticancer effect on lung cancer cell (A549) of water extracts of A. sieboldii . This study investigated the anticancer activity of methanol extracts of A. sieboldii (MeAS) and the underlying mechanism in human FaDu hypopharyngeal squamous carcinoma cells. MeAS inhibited FaDu cells grown dose-dependently without affecting normal cells (L929), as determined by 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide and live and dead assay. In addition, concentration of MeAS without cytotoxicity (0.05 and 0.1 mg/mL) inhibited migration and colony formation. Moreover, MeAS treatment significantly induced apoptosis through the proteolytic cleavage of caspase-3, -7, -9, poly (ADP-ribose) polymerase, and downregulation of Bcl-2 and upregulation of Bax in FaDu cells, as determined by fluorescence-activated cell sorting analysis, 4`6-diamidino- 2-phenylindole stain, and western blotting. Altogether, these results suggest that MeAS exhibits strong anticancer effects by suppressing the growth of oral cancer cells and the migration and colony formation via caspase- and mitochondrial-dependent apoptotic pathways in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, MeAS can serve as a natural chemotherapeutic for human oral cancer.
Trifolium pratense leaves (red clover) has been used in Oriental and European folk medicine for the treatment of whooping cough, asthma, and eczema, and is now being used to treat and alleviate the symptoms, such as hot flushes, cardiovascular health effects that occur in postmenopausal women. However, relatively little scientific data is available on the physiological activity of this plant. Therefore, in this study, we investigated the anti-cancer activity of T. pratense leaves using methanol extract of T. pratense leaves (MeTP) on human FaDu hypopharyngeal squamous carcinoma cells. MeTP inhibited the viability of FaDu cells by inducing apoptosis through the cleavage of procaspase- 3, -7, and -9 and poly (adenosine diphosphate ribose-ribose) polymerase (PARP), downregulation of Bcl- 2, and upregulation of Bax, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Live & dead assay, 4’6-diamidino-2-phenylindole stain, fluorescence-activated cell sorting analysis, and Western blot analysis. In addition, colony formation was slightly inhibited when FaDu cells were treated with a non-cytotoxic concentration (0.125 mg/mL) of MeTP and almost completely inhibited when cells were treated with 0.25 mg/mL MeTP. Collectively, these results indicate that MeTP induced cell apoptosis via caspase- and mitochondrial-dependent apoptotic pathways, and inhibited colony formation of cancer cells in FaDu human hypopharyngeal squamous carcinoma cells. These findings suggest MeTP should be considered for clinical development as a chemotherapeutic option in oral cancer.
Ficus carica L. (common fig), one of the first plants cultivated by humans, originated in the Mediterranean basin and currently grows worldwide, including southwest Asia and South Korea. It has been used as a traditional medicine for treatment of metabolic, cardiovascular, and respiratory diseases as well as hemorrhoids and skin infections. Its pharmacological properties have recently been studied in detail, but research on the anti-cancer effect of its latex has been only been studied on a limited basis on several cell lines, such prostate cancer, breast cancer, and leukemia. In this study, we investigated the anti-cancer activity of the latex of Ficus carica L.and its underlying mechanism in FaDu human hypopharynx squamous carcinoma cells. (See Ed. note above) We confirmed through SDS-PAGE analysis and gelatinolytic activity analysis that the latex of Ficus carica contains cysteine protease ficin. Our data showed that the latex inhibited cell growth in a dose-dependent manner. In addition, the latex treatment markedly induced apoptosis in FaDu cells as determined by FACS analysis, elevated expression level of cleaved caspase-9, -3 and PARP (poly (ADP-ribose) polymerase), and. increased the expression of Bax (pro-apoptotic factor) while decreasing the expression of Bcl-2 (anti-apoptotic factor). Taken together, these results suggested that latex containing the ficin inhibited cell growth and induced apoptosis by caspase and the Bcl-2 family signaling pathway in FaDu human hypopharynx squamous carcinoma cells. These findings point to the potential of latex of Ficus carica to provide a novel chemotherapeutic drug due to its growth inhibition effects and induction of apoptosis in human oral cancer cells.
Anthricin (Deoxypodophyllotoxin), a naturally occurring flavolignan, has well known anti-cancer properties in several cancer cells, such as prostate cancer, cervical carcinoma and pancreatic cancer. However, the effects of Anthricin are currently unknown in oral cancer. We examined the anticancer effect and mechanism of action of Anthricin in human FaDu hypopharyngeal squamous carcinoma cells. Our data showed that Anthricin inhibits cell viability in a dose- and time-dependent manner (IC50 50 nM) in the MTT assay and Live & Dead assay. In addition, Anthricin treated FaDu cells showed marked apoptosis by DAPI stain and FACS. Furthermore, Anthricin activates anti-apoptotic factors such as caspase-3, -9 and poly (ADP-ribose) polymerase (PARP), suggesting that caspase-mediated pathways are involved in Anthricin- induced apoptosis. Anthricin treatment also leads to accumulation of the pro-apoptotic factor Bax, followed by inhibition of cell growth. Taken together, these results indicate that Anthricn-induced cell death of human FaDu hypopharyngeal squamous carcinoma cells is mediated by mitochondrial-dependent apoptotic pathway. In summary, our findings provide a framework for further exploration on Anthricin as a novel chemotherapeutic drug for human oral cancer.
Terfenadine (TFN) was a second generation histamine receptor antagonist. Although several studies have reported the regulatory effect of H1-histamine receptor antagonists in human cancer cell lines, its effect in oral cancer remains unclear. In this study, we focused on addressing the anti-cancer activity of TFN in human oral cancer cell lines. The anti-cancer activities of TFN were performed by tryphan blue exclusion assay, 4'-6-diamidino-2-phenylindole (DAPI) staining, live/dead assay and Western blot analysis. TFN induced a significant reduction of the growth in three different human oral cancer cell lines (MC3, HSC4 and Ca9.22). TFN markedly induced apoptosis through DNA damage and increase in cytotoxicity. It also accumulated cleaved PARP and caspase 3. This process was due to cleavage of caspase 8 and Bid protein. The results from this study strongly demonstrated that the cleavages of caspase 8 and Bid are required for the apoptotic activity of TFN in human oral cancer cells. Taken together, these findings suggest TFN as a potent anticancer drug candidate for the treatment of oral cancer.
The cerebellum is known to control balance, equilibrium, and muscle tone. If the cerebellum becomes damaged, the body is unable to retain its balancing functions or involuntary muscle movement. This is why, in stroke patients, there is a high risk of functional disability, as well as a myriad of other disabilities secondary to stroke. Ischemia was induced in SD mice by occluding the common carotid artery for 5 minutes, after which blood was reperfused. Needle electrode electrical stimulation(NEES) was applied to acupuncture points, at 12, 24, and 48 hours post-ischemia on the joksamri. Protein expression was investigated through caspase-3 antibody immuno-reactive cells in the cerebral nerve cells and Western blotting. The results were as follows: The number of caspase-3 reactive cells in the corpus cerebellum 12 and 24 hours post-ischemia was significantly (p<.05) smaller in the NEES group compared to the GI group. caspase-3 expression 12 and 24 hours post-ischemia was significantly(p<.05) smaller in the NEES group compared to the GI group. Based on these results, NEES seems to have a significant effect on Caspase-3 in the cerebellum in an ischemic state at 12 and 24 hours post ischemia, NEES delays the occurrence of early stage apoptosis-inducing Caspase-3, delaying and inhibiting apoptosis. Further systematic studies will have to be conducted in relation to the application of this study’s results on stroke patients.
Adult stem cell transplantation has been increased every year, because of the lack of organ donors for regenerative medicine. Therefore, development of reliable and safety cryopreservation and bio-baking method for stem cell therapy is urgently needed. The present study investigated safety of dimethyl sulfoxide (DMSO) such as common cryoprotectant on porcine bone marrow derived mesenchymal stem cells (pBM-MSCs) by evaluating the activation of Caspase-3 and -7, apoptosis related important signal pathway. pBM-MSCs used for the present study were isolated density gradient method by Ficoll-Paque Plus and cultured in A-DMEM supplemented 10% FBS at in 5% incubator. pBM-MSCs were cryopreserved in A-DMEM supplemented either with 5%, 10% or 20% DMSO by cooling rate at /min in a Kryo 360 (planner 300, Middlesex, UK) and kept into . Survival rate of cells after thawing did not differ between 5% and 10% DMSO but was lowest in 20% DMSO by 0.4% trypan blue exclusion. Activation of Caspase-3 and -7 by Vybrant FAM Caspase-3 and -7 Assay Assay Kit (Molecular probes, Inc.OR, USA) was analyzed with a flow cytometer. Both of cryopreserved and control groups (fresh pBM-MSCs) were observed after the activation of Caspase-3 and -7. The activation did not differ between 5% and 10% DMSO, but was observed highest in 20% DMSO. Therefore 5% DMSO can be possibly used for cell cryopreservation instead of 10% DMSO.
당뇨망막병증은 서구에서 성인들의 실명을 일으키는 원인이다. 당뇨병이 있을 때 고혈당증은 여러 세포 형태에서 세포자연사를 유도하지만 그 기작은 명확하게 밝혀지지 않았다. 본 연구의 목적은 인간망막 내피세포에서 고혈당 포도당이 세포자연사에 미치는 영향에 대하여 알아보았다. 망막 내피세포는 5, 25, 50 mM 포도당이 포함된 IMDM배지에서 37℃, 5% CO2조정된 항온기에서 24, 36, 48시간 동안 배양하였다. 여러 농도의
Cordyceps militarisis well known as a traditional herbal ingredient, which has been used for patients suffering from cancer in oriental medicine. In this study we have investigated the biochemical mechanisms of anti-proliferative effects by C. militarisextract(CME) in human breast cancer MDA-MB-231 cells. It was found that CME treatment induced chromatin condensation, mitochondrial energization, annexin V staining and sub-G1 phase DNAcontent. These indicators of apoptosis correlate with the mitochondrial dependent pathway, which results in the activation of caspase-3 activity. Both the cytotoxic effect by CME treatment were significantly inhibited by z-DEVD-fmk, a caspase-3 inhibitor,demonstrating the important role of caspase-3 in the observed cytotoxic effect. Cotreatment of CME and LY294002, resulted in significantly induction of apoptosis. These results indicate that caspase-3 is a key regulator of apoptosis in response to CME in human breast cancer MDAMB- 231 through downregulation of Akt, and that the C. militaris extract may therefore have therapeutic potential against human breast cancer.
Agaricus blazei is well known as a traditional medicinal mushroom and it has been shown to exhibit immunostimulatory and anti-cancer activity. However, the cellular and molecular mechanism of apoptosis of cancer cells is poorly understood. In this study, we have investigated whether A. blazei extract (ABE) exerts anti-proliferative and apoptotic effects on human leukemia THP-1 cells. It was found that ABE induced a time- and dose-dependent increase in leukemia cells apoptosis through caspase-3 activation and PARP cleavage. Activation of caspase- 9 induced by ABE suggested that ABE-induced signaling was mediated through a mitochondrial death pathway. In addition, we observed an elevation of ROS and a consequent loss of mitochondrial membrane potential, further suggesting that ABE-induced death signaling was mediated through a mitochondrial oxygen stress pathway. The antioxidant Nacetylcysteine, however, opposed ABE-mediated mitochondrial dysfunction, caspase activation, and apoptosis, supporting the role of ROS in the apoptotic process. We conclude that ABE induces apoptosisin human leukemia cells through a reactive oxygen species and caspase-dependent mitochondrial pathway.
AJthough salivary gland adenocarcinoma accounts for third prevalence rate of all salivary gland tumors. it is one of the most aggressive solid tumors. Current therapy does not s ignificantly improve survival rates. Thus‘ investigating new therape utic modali t ies aga inst sali va ry gland adenocarcinoma is necessary. Manumycin A. a natural product o{ Streptα7Jyces parvuJus‘ inhi bits farn esy l- transferase by competition with farnesyl pyrophosphate groups . Manumycin has shown antitumor activity in several ex per‘ imental systems through identifying the regulatory pathway of apoptosis. The hi erarchical relationship of caspase-8 to caspase-3 and caspase-9 in the drug-induced a poptosis pathway in antitumol effect is not clear. The hi erarchical relations hip between cytochrome c and the caspases and provided evidence to support the hypothesis that the release of cytochrome c was upstream of caspase activation in the enhanced apoptosis induced by manumycin A Manumycin A has not been examined extensively in human salivary gland tumor and has not yet been clarified. The purpose of this study were to investigate mRNA and protein expression of Bc l- 2 、Bax, Cytochrome C‘ caspase- 3 , 一8 and -9 in SGT cell line by RT-PCR and immunoslot blotting, and to a pply its results to exami ne iLs chemoprevention for salivary gland adenocarcinoma. MTI assay showed about 50% cellular viability of SGT cell line treated by 50μM manunycin A Bcl-2. Bax‘ and caspase-8 mRNA expression in SGT cell line were unchangeable after 50μM manu nycin A Cytochrome C‘ caspase-3 and -9 showed about 1.5-5 folds higher mRNA expression in SGT cell line than that of control a nd DMSO- t reated group a fter 50M manunycin A. Bcl-2, Bax, and caspase-8 protein expression in SGT ce ll line were unchangcable after 50μM manunycin A. Cy Lochrorne C, caspase-3 and -9 showed about 2-7 fo lds higher protein express ion in SGT cell line than that of control and DMSO-treated group after 50μM manunycin A. mRNA expression was assoc iated with protein expression in SGT cell line after 50μM manunycin A. It suggested that manumycin A would induce poptotic effect on SGT cell line by caspase-3 and - 9 activation through cytochrorne c release. And man umycin A will be a useful chemoprevention drug for human salivary gland carcinoma in future.
Cordyceps militaris is well known as a traditional herbal ingredient, which has been used for patients suffering from cancer in oriental medicine. In this study we have investigated the biochemical mechanisms of anti-proliferative effects by C. militaris extract(CBE) in human breast cancer MDA-MB-231 cells. It was found that CBE treatment induced chromatin condensation, mitochondrial energization, annexin V staining and sub-G1 phase DNA content. These indicators of apoptosis correlate with the mitochondrial dependent pathway, which results in the activation of caspase-3 activity. Both the cytotoxic effect by CBE treatment were significantly inhibited by z-DEVD-fmk, a caspase-3 inhibitor, demonstrating the important role of caspase-3 in the observed cytotoxic effect. Co-treatment of CBE and LY294002, resulted in significantly induction of apoptosis. These results indicate that caspase-3 is a key regulator of apoptosis in response to CBE in human breast cancer MDA-MB-231 through down regulation of Akt, and that the C. militaris extract may therefore have therapeutic potential against human breast cancer.
Cordyceps militaris is well known as a traditional herbal ingredient, which has been used for patients suffering from cancer in oriental medicine. In this study we have investigated the biochemical mechanisms of anti-proliferative effects by C. militaris extract(CBE) in human breast cancer MDA-MB-231 cells. It was found that CBE treatment induced chromatin condensation, mitochondrial energization, annexin V staining and sub-G1 phase DNA content. These indicators of apoptosis correlate with the mitochondrial dependent pathway, which results in the activation of caspase-3 activity. Both the cytotoxic effect by CBE treatment were significantly inhibited by z-DEVD-fmk, a caspase-3 inhibitor, demonstrating the important role of caspase-3 in the observed cytotoxic effect. Co-treatment of CBE and LY294002, resulted in significantly induction of apoptosis. These results indicate that caspase-3 is a key regulator of apoptosis in response to CBE in human breast cancer MDA-MB-231 through down regulation of Akt, and that the C. militaris extract may therefore have therapeutic potential against human breast cancer.
Agaricus blazeiMurill is an edible mushroom distributed in Brazil and presently cultivated in other areas, including Korea, Japan, and China. Its chemical components, including steroids and lectin and various polysaccharides have been widely studied. For this, we used U937/vector and U937/Bcl-2 cells, which were generated by transfection of the cDNA of the Bcl-2 gene. As compared with U937/vector, U937/Bcl-2 cells exhibited a 4-fold greater expression of Bcl-2. Treatment with 0.5 or 4 mg/ml A. blazei Murill for 24 h produced morphological features of apoptosis in U937/vector cells, respectively. This was associated with caspase-3 activation and PARP degradation. In contrast, A. blazei Murill-induced caspase-3 activation and PARP degradation and apoptosis were significantly inhibited by z-DEVD-fmk in U937 cells. Bcl-2 overexpressing cells exhibited sustained caspase-3 activation and expression levels of the Bcl-2 proteins during A. blazei Murill-induced apoptosis. In addition, these findings indicate that Bcl-2 inhibits A. blazei Murill-induced apoptosis by a mechanism that interferes with Bcl-2 degradation and activity of caspase-3 that is involved in the execution of apoptosi.
In most tissues, apoptosis plays a pivotal role in normal development and in regulation of cell number. Therefore inappropriate apoptosis is revealed in a variety of diseases. This study was carried out to investigate the effects of acupuncture and needle electrode electrical stimulation on the change of caspase-3, 9 and neuronal nitric oxide synthase (nNOS) immunoreactive cells in the sprague dawley rats (SD rat). In immobilized SD rats (n=5), enhanced caspase-3 and caspase-9 expression were detected in the reticular part of substantia nigra, and enhanced nNOS was detected in the dorsolateral periaqueductal gray (DL-PAG) of midbrain and the paraventricular nucleus (PVN) of the hypothalamus using immunohistochemistry. Following the immobilization, acupuncture (n=5) and needle electrode electrical stimulation (n=5, 2 Hz) was applied at Hg (LI4) acupoint of SD rats, respectively. The stress-induced enhancement in the expression of caspase-3, 9 and nNOS were The present results demonstrate that and needle electrode electrical stimulation are effective in the modulation of expression of caspase-3, 9 and nNOS induced by immobilization.
Tributyltin (TBT) used world-wide in antifouling paints toy ships is a wide-spread environmental pollutant. At low doses, antiproliferative modes of action have been shown to be involved, whereas at higher doses apoptosis seems to be the mechanism of toxi