검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study platform, electrocatalytic detection of the antibiotic chloramphenicol (CAP) in phosphate buffer (pH 7) was easily achieved using a carbon paste electrode modified with NiO nanoparticles (note NiO-CPE). The peak reduction potential of chloramphenicol on the modified electrode is at (− 0.60 V/NiO-CPE vs. Ag/AgCl), its electrochemical behavior is completely irreversible, and controlled by adsorption phenomena. An excellent electrocatalytic activity has been demonstrated by the modified elaborated electrode towards the NO2 attracting group on the side chain of chloramphenicol. The structure and chemical composition of the NiO-CPE sensor were analyzed by SEM, and the X-ray diffraction results indicated that nickel oxide microcrystals were formed on the carbon sheets. The electrochemical characteristics of the NiO-CPE sensor were examined by cyclic voltammetry and electrochemical impedance spectroscopy in comparison with the unmodified carbon. Since the DPV technique allows plotting the linearity curve between the electrocatalytic current intensity of the Chloramphenicol peak and their concentration, the proposed sensor showed a remarkable detection limit of 1.08 × 10– 8 mol/L M (S/N = 3) and a wide determination range from 100 to 0.1 μM for Chloramphenicol. The developed sensor was successfully applied in the detection of Chloramphenicol in real samples.
        5,500원
        2.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, magnetite (Fe3O4) nanoparticles were electrochemically synthesized in an aqueous electrolyte at a given potential of -1.3 V for 180 s. Scanning electron microscopy revealed that dendrite-like Fe3O4 nanoparticles with a mean size of < 80 nm were electrodeposited on a glassy carbon electrode (GCE). The Fe3O4/GCE was utilized for sensing chloramphenicol (CAP) by cyclic voltammetry and square wave voltammetry. A reduction peak of CAP at the Fe3O4/GCE was observed at 0.62 V, whereas the uncoated GCE exhibited a very small response compared to that of the Fe3O4/GCE. The electrocatalytic ability of Fe3O4 was mainly attributed to the formation of Fe(VI) during the anodic scan, and its reduction to Fe(III) on the cathodic scan facilitated the sensing of CAP. The effects of pH and scan rate were measured to determine the optimum conditions at which the Fe3O4/GCE exhibited the highest sensitivity with a lower detection limit. The reduction current for CAP was proportional to its concentration under optimized conditions in a range of 0.09-47 μM with a correlation coefficient of 0.9919 and a limit of detection of 0.09 μM (S/N=3). Moreover, the fabricated sensor exhibited anti-interference ability towards 4-nitrophenol, thiamphenicol, and 4-nitrobenzamide. The developed electrochemical sensor is a cost effective, reliable, and straightforward approach for the electrochemical determination of CAP in real time applications.
        4,000원