Background: Somatic cell nuclear transfer (SCNT) is a prominent technology that can preserve superior genetic traits of animals and expand the population in a short time. Hematological characters and endocrine profiles are important elements that demonstrate the stability of the physiological state of cloned animals. To date, several studies regarding cloned camels with superior genes have been conducted. However, detailed hemato-physiological assessments to prove that cloned camels are physiologically normal are limited. In this study, We evaluated the hemato-physiological characteristics of cloned male and female dromedary camels (Camelus dromedaries). Methods: Therefore, we analyzed variations in hematological characteristics and endocrine profiles between cloned and non-cloned age-matched male and female dromedary camels (Camelus dromedaries ). Two groups each of male and female cloned and non-cloned camels were monitored to investigate the differences in hemato-physiological characteristics. Results: All the animals were evaluated by performing complete blood count (CBC), serum chemistry, and endocrinological tests. We found no significant difference between the cloned and non-cloned camels. Furthermore, the blood chemistry and endocrine profiles in male and female camels before maturity were similar. Conclusions: These results suggest that cloned and non-cloned camels have similar hematological characteristics and endocrine parameters.
In general, cloned pigs have been produced using the somatic cell nuclear transfer (SCNT) technique with various types of somatic cells; however, the SCNT technique has disadvantages not only in its low efficiency but also in the development of abnormal clones. This study aimed to compare early embryonic development and quality of SCNT embryos with those of induced pluripotent stem cells (iPSCs) NT embryos (iPSC-NTs). Ear fibroblast cells were used as donor cells and iPSCs were generated from these cells by lentiviral transduction with human six factors (Oct4, Sox2, c-Myc, Nanog, Klf4 and Lin28). Blastocyst formation rate in iPSC-NT (23/258, 8.9%) was significantly lower than that in SCNT (46/175, 26.3%; p < 0.05). Total cell number in blastocysts was similar between two groups, but blastocysts in iPSC-NT had a lower number of apoptotic cells than in SCNT (2.0 ± 0.6 vs. 9.8 ± 2.9, p < 0.05). Quantitative PCR data showed that apoptosis-related genes (bax, caspase-3, and caspase-9) were highly expressed in SCNT than iPSC-NT (p < 0.05). Although an early development rate was low in iPSC-NT, the quality of cloned embryos from porcine iPSC was higher than that of embryos from somatic cells. Therefore, porcine iPSCs could be used as a preferable cell source to create a clone or transgenic animals by using the NT technique.
This experiment was conducted to analyse the effects of flavone supplementation on the preimplantation development of in-vitro produced porcine embryos. During in-vitro development, immature oocytes and early embryos were exposed to different concentrations of flavone (0, 1μM, 25μM, 50 μM, and 100 μM respectively). Results showed that 100 μM of flavone significantly reduced the intracellular ROS levels of oocytes accompanied with a significant rise in GSH level. In parthenogenesis, no significant change was observed in the cleavage rates whether flavone was supplemented in IVM or IVC media. In IVM supplemented group, the blastocyst development rate was significantly enhanced by 1 μM concentration than other groups (51.5% vs. 41.3%, 44.0%, 36.3%, 31.7%; P<0.05) respectively. However, in IVC group 1 μM concentration significantly improved the blastocysts production than 50 μM and control groups (50.0% vs. 40.5%, 38.0%; P<0.05) respectively. Following nuclear transfer, the cleavage rate of IVM group was significantly more in 1 μM than 50 μM and 100 μM groups (92.9% vs. 89.7%, 87.8%; P<0.05), followed by similar pattern of cloned blastocysts production being significantly higher in 1 μM group than 50 μM, 100 μM and control groups (16.8% vs. 9.0%, 7.1%, 12.8%; P<0.05) respectively. In IVC group, 1 μM concentration resulted in significantly higher cleavage rate than 25 μM and 50 μM groups (91.7% vs. 87.8%, 88.8%; P<0.05) respectively. However, the blastocysts production was significantly higher in 100 μM group than others (26.2% vs. 13.6%, 14.0%, 18.2%; P<0.05) respectively. The optimal concentrations of flavone significantly enhanced the percentages of ICM:TE than control group (43.8% vs. 37.6%; P<0.05) accompanied with significantly higher expression levels of reprogramming related genes. In conclusion, the optimal concentrations of 1 μM during IVM and 100 μM during IVC can significantly improve the production of porcine in-vitro embryos.
Pigs are considered as optimal donor animal for the successful xenotransplantation. To increase the possibility of clinical application, genetic modification to increase compatibility with human is an important and essential process. Genetic modification technique has been developed and improved to produce genetically modified pigs rapidly. CRISPR/Cas9 system is widely used in various fields including the production of transgenic animals and also can be enable multiple gene modifications. In this study, we developed new gene targeting vector and enrichment system for the rapid and efficient selection of genetically modified cells. We conducted co-transfection with two targeting vectors for simultaneous inactivation of two genes and enrichment of the genetically modified cells using MACS. After this efficient enrichment, genotypic analysis of each colony showed that colonies which have genetic modifications on both genes were confirmed with high efficiency. Somatic cell nuclear transfer was conducted with established donor cells and genetically modified pigs were successfully produced. Genotypic and phenotypic analysis of generated pigs showed identical genotypes with donor cells and no surface expression of α-Gal and HD antigens. Furthermore, functional analysis using pooled human serum revealed dramatically reduction of human natural antibody (IgG and IgM) binding level and natural antibody-mediated cytotoxicity. In conclusion, the constructed vector and enrichment system using MACS used in this study is efficient and useful to generate genetically modified donor cells with multiple genetic alterations and lead to an efficient production of genetically modified pigs.
Mitochondrial dysfunction is found in oocytes and transmitted to offspring due to maternal obesity. Treatment of obese mothers with endoplasmic reticulum (ER) stress inhibitors such as salubrinal (SAL) can reverse the mitochondrial dysfunction and result in normal embryonic development. Pig oocytes have also shown ER stress mostly in metaphase II stage. ER stress in oocytes may hinder the in vitro production of pig embryos. This study investigated the effect of ER stress inhibition by SAL treatment during in vitro maturation (IVM) of porcine oocytes at 1, 10, 50 and 100 nM concentrations. Firstly, we tested various concentrations of SAL. SAL at 10 nM showed higher (P < 0.05) developmental competence to the blastocyst stage (55.6%) after parthenogenesis (PA) than control (44.2%) while not different from other concentrations (49.2, 51.6, and 50.8% for 1, 50, and 100 nM, respectively). Secondly, we performed time-dependent treatment at 10 nM of SAL for IVM of oocytes. It revealed that treatment with SAL during 22 to 44 h of IVM significantly improved PA embryonic development to the blastocyst stage compared to control (40.5, 46.3, 51.7 and 60.2% for control, 0 to 22 h, 22 to 44 h and 0 to 44 h of IVM, respectively, P < 0.05). Glutathione (GSH) content is an indicator of cytoplasmic maturation of oocytes. Reactive oxygen species (ROS) have a harmful effect on developmental competence of oocytes. For this, we determined the intraoocyte levels of GSH and ROS after 44 h of IVM. It was found that SAL increased intraoocyte GSH level and also decreased ROS level (P < 0.05). Finally, we performed somatic cell nuclear transfer (SCNT) after treating oocytes with 10 nM SAL during IVM. SAL treatment significantly improved blastocyst formation of SCNT embryos compared to control (39.6% vs. 24.7%, P < 0.05). Our results indicate that treatment of pig oocytes with ER stress inhibitor SAL during IVM improves preimplantation development PA and cloned pig embryos by influencing cytoplasmic maturation in terms of increased GSH content and decreased ROS level in IVM pig oocytes.
Bovine somatic cell nuclear transfer (bSCNT) embryos can develop to the blastocyst stage at a rate similar to that of embryos produced by in vitro fertilization (IVF). However, the efficiency of somatic cell cloning has remained low, and applications have been limited, irrespective of the nuclear donor species or cell types. One possible explanation is that the reprogramming factors of each oocyte is insufficient or not properly adapted for the receipt of a somatic cell nucleus, because it is naturally prepared only for the receipt of a gamete. Here, we would like to introduce the aggregation method (agSCNT), a new experimental system that enables and increase oocyte volume and examined its subsequent development. Judgement by the blastocyst formation rate or total cell number was significantly higher in the agSCNT group than that in the SCNT group, and was very similar to that in the control IVF group. Moreover, the cleavage formation rate in the agSCNT group (61.5 ± 1.3) was higher than that in the SCNT group (39.7 ± 2.1), while still less than that in the IVF group (75.4 ± 1.3). We also analyzed the epigenetic modifications in bovine IVF, agSCNT, and untreated SCNT embryos. In conclusion, the present study demonstrated that agSCNT improves the in vitro developmental competence and quality of cloned embryos, as evidenced by increased total cell numbers (TC).
Mitochondrial dysfunction is found in oocytes and transmitted to the offspring due to maternal obesity. This is curable by endoplasmic reticulum (ER) stress inhibitors such as salubrinal (SAL). Recently pigs are considered as a model animal for biomedical research due to its physiological similarity with human. Pig oocytes have shown ER stress mostly in metaphase II stage. ER stress is hindering the in vitro embryo production (IVP). This study investigated the effect of ER stress inhibition by using SAL during 44 h of in vitro maturation (IVM) of oocytes at 1, 10, 50 and 100 nM concentrations. Firstly, we defined the concentration of SAL during IVM of pig oocytes. SAL at 10 nM showed higher (44.2 to 55.6%, P<P0.05) development competence to the blastocyst state than control and other concentrations after parthenogenetic activation (PA). Secondly, we sorted out the time-dependent treatment at 10 nM of SAL for IVM of oocytes. It revealed that treatment with SAL during 22 to 44 h and 0 to 44 h of IVM improved PA embryonic development significantly (40.5, 51.7 and 60.2% for control, 22 to 44 h and 0 to 44 h of IVM, respectively, P<0.05). Glutathione (GSH) level is an indicator of cytoplasmic maturation of oocytes. Reactive oxygen species (ROS) have a harmful effect on development competence of oocytes. For this, we determined the intraoocyte levels of GSH and ROS after 44 h of IVM. It was found that SAL increased intraoocyte GSH level and also decrease ROS level (P<0.05). Finally, we performed somatic cell nuclear transfer (SCNT) after treating oocytes with 10 nM SAL during IVM. SAL treatment significantly improved blastocyst formation of SCNT embryos compared to control (24.7 vs. 39.6%, P<0.05). Our results indicate that treatment of pig oocytes with ER stress inhibitor SAL during IVM improves preimplantation development cloned pig embryos by influencing cytoplasmic maturation in terms of increased GSH content and decreased ROS level in IVM pig oocytes.
Even though klotho deficiency in mice exhibits multiple aging-like phenotypes, studies using large animal models such as pigs, which have many similarities to humans, have been limited due to the absence of cell lines or animal models. The objective of this study was to generate homozygous klotho knockout porcine cell lines and cloned embryos. A CRISPR sgRNA specific for the klotho gene was designed and sgRNA (targeting exon 3 of klotho) and Cas9 RNPs were transfected into porcine fibroblasts. The transfected fibroblasts were then used for single cell colony formation and 9 single cell–derived colonies were established. In a T7 endonuclease I mutation assay, 5 colonies (#3, #4, #5, #7 and #9) were confirmed as mutated. These 5 colonies were subsequently analyzed by deep sequencing for determination of homozygous mutated colonies and 4 (#3, #4, #5 and #9) from 5 colonies contained homozygous modifications. Somatic cell nuclear transfer was performed to generate homozygous klotho knockout cloned embryos by using one homozygous mutation colony (#9); the cleavage and blastocyst formation rates were 72.0% and 8.3%, respectively. Two cloned embryos derived from a homozygous klotho knockout cell line (#9) were subjected to deep sequencing and they showed the same mutation pattern as the donor cell line. In conclusion, we produced homozygous klotho knockout porcine embryos cloned from genome-edited porcine fibroblasts.
We investigate the effect of L-glutathione (GSH), an antioxidant, treatment during the somatic cell nuclear transfer (SCNT) procedures on the in vitro development and DNA methylation status of bovine SCNT embryos. Bovine in vitro matured (IVM) oocytes were enucleated and electrofused with a donor cell, then activated by a combination of Ca-ionophore and 6-dimethylaminopurine. The recipient oocytes or reconstituted oocytes were treated with 50 μM GSH during these SCNT procedures from enucleation to activation treatment. The SCNT embryos were cultured for 7 days to evaluate the in vitro development, apoptosis and DNA methylation in blastocysts. The apoptosis was measured by TUNEL assay and caspase-3 activity assay. Methylated DNA of SCNT embryos at the blastocyst stages was detected using a 5-methylcytidine (5-MeC) antibody. The developmental rate to the blastocyst stage was significantly higher (P<0.05) in GSH treatment group (32.5±1.2%, 78/235) than that of non-treated control SCNT embryos (22.3±1.8%, 50/224). TUNEL assay revealed that the numbers of apoptotic cells in GSH treatment group (2.3±0.4%) were significantly lower (P<0.05) than that of control (3.8±0.6%). Relative caspase-3 activity of GSH treated group was 0.8±0.06 fold compared to that of control. DNA methylation status of blastocysts in GSH treatment group (13.1±0.5, pixels/ embryo) was significantly lower (P<0.05) than that of control (17.4±0.9, pixels/embryo). These results suggest that antioxidant GSH treatment during SCNT procedures can improve the embryonic development and reduce the apoptosis and DNA methylation level of bovine SCNT embryos, which may enhance the nuclear reprogramming of bovine SCNT embryos.
Although the majority of surviving pigs cloned by somatic cell nuclear transfer (SCNT) appear to be physiologically normal, there is a general lack of detailed hemato-physiologic studies for the period of early adulthood to substantiate this claim. In the present study, we investigated variation in blood chemistry and endocrinological parameters between mesenchymal stem cells (MSCs) derived from cloned and normal age-matched female and male miniature pigs. Cloned females and males showed normal ranges for complete blood count assessments. Biochemical assessments showed that γ-GGT, ALT and cholesterol levels of male and female clones were significantly (P<0.05 or P<0.01, respectively) higher than that of age-matched control miniature pigs. Variations in insulin and IGF-1 were higher in female clones than in male clones and controls. Thus, although female and male cloned miniature pigs may be physiologically similar to normal animals, or at least within normal ranges, a greater degree of physiological and endocrinological variation was found in cloned pigs. The above variation must be taken into account before considering cloned female or male miniature pigs for various biomedical applications.
This study was conducted to optimize the efficiency of cloning and to produce cloned mice. The majority of cloned mammals derived by nuclear transfer (NT) die during gestation and have enlarged and dysfunctional placentas. In this study, the optimized conditions were established to produce clone mice. The parthenogenetic oocytes were activated after 6 h regardless of cytochalasin B (CB) concentration. CB treatment (2 μg/ml) was found second polar body. Lower concentration of CB was decreased the activation rate, but the second polar body was the best highly increased during 6 h incubation. The small fragments were exhibited in the 5 μg/ml treatment of CB, but it was not found in lower concentration groups (> 2.5 μg/ml). To examine effects of SrCl2 on the adult cumulus cells, somatic cell NT oocytes were exposed during 0.5, 1 and 6 hrs. The second polar body was significantly greater in 0.5 h exposure group (6.6%) than 1, 6 hrs. Developmental rate from 2-cell to 4-cell was the lowest in 7.5 mM Strontium chloride (SrCl2) groups (84.1% and 64.3%) than 5, 10 m MSrCl2. The implantation rate was not significantly difference among 5, 7.5 and 10 m MSrCl2 group. Three live fetuses were produced by SCNT. SCNT placentas were remarkably heavier than IVF group (8 fetuses) (0.34, 0.34, 0.33 vs 0.14 g) compared with the placenta weight of IVF and SCNT clones. (Key words : parthenogenetic oocytes, cytochalasin B, cloned mice)
Low efficiency of somatic cell nuclear transfer (SCNT) is attributed to incomplete reprogramming of transfered nu-clei into oocytes. Trichostatin A (TSA), histone deacetylase inhibitor and 5-aza-2’deoxycytidine (5-aza-dC), DNA methy-lation inhibitor has been used to enhance nuclear reprogramming following SCNT. However, it was not known molec-ular mechanism by which TSA and 5-aza-dC improve preimplantation embryo and fetal development following SCNT. The present study investigates embryo viability and gene expression of cloned porcine preimplantation embryos in the presence and absence of TSA and 5-aza-dC as compared to embryos produced by parthenogenetic activation. Our results indicated that TSA treatment significantly improved development. However 5-aza-dC did not improve development. Presence of TSA and 5-aza-dC significantly improved total cell number, and also decreased the apoptot-ic and autophagic index. Three apoptotic-related genes, Bak, Bcl-xL, and Caspase 3 (Casp3), and three autophagic-re-lated genes, ATG6, ATG8, and lysosomal-associated membrane protein 2 (LAMP2), were measured by real time RT-PCR. TSA and 5-aza-dC treatment resulted in high expression of anti-apoptotic gene Bcl-xL and low pro-apoptotic gene Bak expression compared to untreated NT embryos or parthenotes. Furthermore, LC3 protein expression was lower in NT-TSA and NT-5-aza-dC embryos than those of NT and parthenotes. In addition, TSA and 5-aza-dC treated embryos displayed a global acetylated histone H3 at lysine 9 and methylated DNA H3 at lysine 9 profile similar to the parthenogenetic blastocysts. Finally, we determined that several DNA methyltransferase genes Dnmt1, Dnmt3a and Dnmt3b. NT blastocysts showed higher levels Dnmt1 than those of the TSA and 5-aza-dC blastocysts. Dnmt3a is lower in 5-aza-dC than NT, NTTSA and parthenotes. However, Dnmt3b is higher in 5-aza-dC than NT and NTTSA. These results suggest that TSA and 5-aza-dC positively regulates nuclear reprogramming which result in modulation of apoptosis and autophagy related gene expression and then reduce apoptosis and autophagy. In addition, TSA and 5-aza-dC affects the acetylated and methylated status of the H3K9.
The objective of this study was to monitor health conditions of four genetically identical somatic cells cloned Labrador retriever puppies by estimation of body weight and analysis of hematologic and serologic characteristics. Naturally ovulated oocytes and donor cells were used for somatic cell nuclear transfer (SCNT). Donor cells and enucleated oocytes were followed by electric fusion, chemical activation and surgical embryo transfer into the oviducts of surrogate females. Two recipients became pregnant; two maintained pregnancy to term, and four live puppies were delivered by Caesarean section. The cloned Labrador retrievers were genetically identical to the nuclear donor dog. The body weight of clone-1, -2, -3, and -4 was increased from 0.66, 0.40, 0.39, and 0.37 kg at birth to 6.2, 6.6, 6.2, and 6.0 kg at 8 weeks of age, respectively. Although clone-4 had lower numbers of RBC than reference range, the most of RBC and WBC related heamatologic results of cloned puppies were not different when compared to reference range. In serological analysis, Glucose, ALP and inorganic phosphate level of four cloned puppies was significantly higher than the reference ranges. However, there was no significant difference among four cloned dogs. This study suggests that cloned puppies derived from SCNT did not have remarkable health problems, at least in the growth pattern and hematological and serological parameters.
In order to investigate genetic stability and gene expression profile after cloning procedure, two groups of cloned pigs were used for swine leukocyte antigen (SLA) gene nucleotide alteration and microarray analyses. Each group was consist of cloned pigs derived from same cell line (n=3 and 4, respectively). Six SLA loci were analyzed for cDNA sequences and protein translations. In total, 16 SLA alleles were identified and there were no evidence of SLA nucleotide alteration. All SLA sequences and protein translations were identical among the each pig in the same group. On the other hand, microarray assay was performed for profiling gene expression of the cloned pigs. In total, 43,603 genes were analyzed and 2,150~4,300 reliably hybridized spots on the each chip were selected for further analysis. Even though the cloned pigs in the same group had identical genetic background, 18.6~47.3% of analyzed genes were differentially expressed in between each cloned pigs. Furthermore, on gene clustering analysis, some cloned pigs showed abnormal physiological phenotypes such as inflammation, cancer or cardiomyopathy. We assumed that individual environmental adaption, sociality and rank in the pen might have induced these different phenotypes. In conclusion, the results of the present study indicate that SLA locus genes appear to be stable following SCNT. However, gene expressions and phenotypes between cloned pigs derived from the same cell line were not identical even under the same rearing conditions.
This study aimed at investigating whether a porcine follicular fluid (pFF) supplementation positively affects the characteristics of donor cells and the developmental competence of porcine cloned embryos. Ear fibroblast cells (donor cell) from an Massachusetts General Hospital miniature pig were cultured in different culture methods: (1) Dulbecco's modified Eagle's medium (DMEM)+10% FBS (Control); (2) DMEM+0.5% FBS (SS); and (3) DMEM+10% FBS+10% pFF (pFF) for 72 h. In each conditioned medium, the concentrations of 4 amino acids (Thr, Glu, Pro, and Val) in the pFF group were significantly different from those in the control group (p<0.05 or p<0.01). The proliferation of the cells cultured in the SS group was significantly lower than that of the other treatment groups (p<0.01). The population of apoptotic and necrotic cells in the SS group was significantly higher than that of either the control or the pFF group (p<0.01). The number of embryos that cleaved (p<0.05) and developed into blastocysts (p<0.01) in the SS group was significantly lower than that of either the control or the pFF group. Compared to other groups, the blastocysts produced from the donor cells in the pFF group had higher total cells and lower apoptotic cells (p<0.05). It can be concluded that pFF supplementation in the donor cell culture medium positively affects cell death, cell cycle and quality of the cloned blastocyst.