검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2023.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In the present work, we address the new route for the green synthesis of manganese dioxide (MnO2) by an innovative method named the solution plasma process (SPP). The reaction mechanism of both colloidal and nanostructured MnO2 was investigated. Firstly, colloidal MnO2 was synthesized by plasma discharging in KMnO4 aqueous solution without any additives such as reducing agents, acids, or base chemicals. As a function of the discharge time, the purple color solution of MnO4 - (oxidation state +7) was changed to the brown color of MnO2 (oxidation state +4) and then light yellow of Mn2+ (oxidation state +2). Based on the UV-vis analysis we found the optimal discharging time for the synthesis of stable colloidal MnO2 and also reaction mechanism was verified by optical emission spectroscopy (OES) analysis. Secondly, MnO2 nanoparticles were synthesized by SPP with a small amount of reducing sugar. The precipitation of brown color was observed after 8 min of plasma discharge and then completely separated into colorless solution and precipitation. It was confirmed layered type of nanoporous birnessite- MnO2 by X-ray powder diffraction (XRD), fourier-transform infrared spectroscopy (FT-IR), and electron microscopes. The most important merits of this approach are environmentally friendly process within a short time compared to the conventional method. Moreover, the morphology and the microstructure could be controllable by discharge conditions for the appropriate potential applications, such as secondary batteries, supercapacitors, adsorbents, and catalysts.
        4,000원
        3.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구는 화장품에 사용가능한 촉매제를 사용하여 콜로이달 골드를 합성하는 제조법과 이를 이용한 피부 개선 효과를 가진 항노화 엠플에 응용하였다. 하이드로젠테트라클로로아우레이트테트라하이드레이트에 아스코르빅애씨드, 소듐보로하이드라이드를 환원촉매제로 사용하여 나노 콜로이드를 합성하였다. 촉매제인 아스코르빅애씨드의 함량의 질량이 증가될수록 입자가 작아지는 것을 확인하였다. 반면 소듐 보로하이드라이드의 질량이 증가될수록 입자크기는 증가하는 경향을 보였다. 콜로이달 골드 반응 속도를 조절하기 위하여, 잔탄검과 하이드록시에칠셀룰로오스를 사용하여 100~500 nm의 입경분포를 가진 입자를 얻을 수 있었다. 최적의 합성조건은 18℃, 20~75 mmHg의 감압상태, 교반속도 10~50rpm, 1~4시간동안 반응하여 획득할 수 있었다. 합성된 콜로이달 골드의 외관은 진한 핑크색, pH=5.5, 비중은 1.0032, 점도는 80~310 cps로 특이한 고유 냄새를 가지고 있었다. 스킨케어 화장료의 응용으로, 안티에이징 엠플을 개발하였고, 이를 이용한 다양한 처방과 제형개발에 활용될 것으로 기대한다.
        4,000원
        5.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Over the last decade, the study of the synthesis of semiconductor colloidal quantum dots has progressed at a tremendous rate. Colloidal quantum dots, which possess unique spectral-luminescent characteristics, are of great interest in the development of novel materials and devices, which are promising for use in various fields. Several studies have been carried out on hot injection synthesis methods. However, these methods have been found to be unsuitable for large-capacity synthesis. Therefore, this review paper introduces synthesis methods other than the hot injection synthesis method, to synthesize quantum dots with excellent optical properties, through continuous synthesis and large capacity synthesis. In addition, examples of the application of synthesized colloid quantum dots in displays, solar cells, and bio industries are provided.
        4,000원
        6.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the main growth mechanism of InP during InP/ZnS reaction of quantum dots (QDs). The size of the InP core, considering a synthesis time of 1-30 min, increased from the initial 2.56 nm to 3.97 nm. As a result of applying the proposed particle growth model, the migration mechanism, with time index 7, was found to be the main reaction. In addition, after the removal of unreacted In and P precursors from bath, further InP growth (of up to 4.19 nm (5%)), was observed when ZnS was added. The full width at half maximum (FWHM) of the synthesized InP/ZnS quantum dots was found to be relatively uniform, measuring about 59 nm. However, kinetic growth mechanism provides limited information for InP / ZnS core shell QDs, because the surface state of InP changes with reaction time. Further study is necessary, in order to clearly determine the kinetic growth mechanism of InP / ZnS core shell QDs.
        4,000원