가는잎향유[Elsholtzia angustifolia (Loes.) Kitag.]는 화형 이 아름답고, 정유 특유의 향기가 좋아서 분화용 및 지피용 관 상식물로 수요가 증가하고 있고, 전초에는 약효가 있다고 알 려져 있다. 본 연구는 가는잎향유의 육묘에 미치는 플러그 트 레이 셀 사이즈, 파종립수, 차광정도, 추비농도 등의 영향을 구명하기 위하여 수행되었다. 연구결과, 플러그 트레이 셀 사 이즈는 용량이 증가할수록 유묘의 초장, 엽수, 마디수, 근장, 지상부 생체중이 유의적으로 증가하였다. 파종 립수는 2립 파 종 시 가장 효율적이었고, 파종량이 증가할수록 생육이 감소 하였다. 차광정도가 높아질수록 초장은 증가하였고, 경직경, 엽수, 마디수는 55% 차광에서 가장 우수하였다. 추비 처리 시 공시비료 1000배 처리구에서 생육이 가장 양호하였다. 따라 서 가는잎향유의 육묘 시 162셀 트레이에 원예상토를 채운 다음 셀 당 2립 파종한 후 55% 차광막이 설치된 육묘상에서 공시비료 1000배로 엽면시비하는 것이 가장 효과적인 것으로 생각된다.
Radioactive wastes that are generated as a result of operating NPPs, contain 63Ni and 59Ni that should be analyzed in accordance with the notice of Nuclear Safety and Security Commission (NSSC) for the acceptance of Korea Radioactive Waste Agency (KORAD). Analyzing 63Ni and 59Ni has few challenges to determine activities of each nuclide in radioactive waste sample that contains both nuclides. As is well known, 63Ni can be analyzed by liquid scintillation counter (LSC) detecting its emitted beta rays, however, beta rays emitted from 59Ni are overlapped on the spectrum. Therefore, to discriminate those two nuclides, spectrum channel should be divided according to its dedicating part of the spectrum. For instance, 59Ni contribute to spectrum channel 30–250, on the other hand, 63Ni contributes to spectrum channel 30–450. In other word, 63Ni solely can be analyzed on the channel from 260 to 450. To analyze both 63Ni and 59Ni using this channel division method, detection efficiency must be measured in advance; efficiency of 63Ni and 59Ni at ch. 30–250, and efficiency of 63Ni at ch. 260–450, then the activity can be calculated using the corresponding efficiency. In this study, for verifying the feasibility of channel division method, 5 simulated samples were prepared with different ratio of 63Ni/59Ni. The ratio varies as 1, 2, 10, 20 and 100 spiking standard source of 63Ni and 59Ni. Each sample was mixed with scintillation cocktail and detected for 90 minutes by LSC (300SL, Hidex) after the stabilization of solutions. As a result, calculated 63Ni activities for all sample were averaged as 97% of spiked activity. However, calculated 59Ni activity were 101%, 103%, 128%, 140%, 260%, respectively. The result indicates that 59Ni cannot be discriminated by channel division method when it exists in the sample with high 63Ni over 10 times then 59Ni such as radioactive waste sample. However, the results also show that the channel division method for analyzing 63Ni activity was successful verifying it can determine the activity of 63Ni regardless of the affect of 59Ni on the spectrum.
This study investigated the quality characteristics of black soybean paste(Daemacjang) with black soybean content and salt concentration. The total acidity increased as the pH decreased during fermentation period. The amino-type nitrogen content of all samples increased significantly during fermentation time. Total cell counts was not significantly different during fermentation, and mold counts decreased at 3 log cycles. The cell counts of lactic acid bacteria decreased approximately 2 to 3 log cycles in 10% salt concentration (treat B and C), and were not detected in treat A and D. Total polyphenol contents of treat A, B, and C were 42.77%, 52.99% and 52.95% during fermentation up to 70days, respectively, which was higher than D (39.86%). In a sensory evaluation, treat B showed the highest scores for overall acceptability.
EC 기준 순환식 양액재배에서 식물의 양분 흡수와 배액율은 재사용 양액 내의 이온 비율과 농도에 영향을 미친다. 본 연구는 파프리카(Capsicum annum L. 'Boogie')의 EC 기준 순환식 양액재배에서 시간과 배액율에 따른 이온 농도의 변화를 분석하기 위해 수행하였다. 첫 번째 실험에서 수집된 배액을 EC 2.2dS·m-1로 조정하고 새로 조성한 양액과 혼합하여 재사용 하고 주기적으로 샘플링 하여 이온의 농도를 분석하였다. 두번째 실험은 7%, 16%, 39%, 51%의 배액율을 적용하고 배액과 배액을 원수로 희석하고 새로 조성한 양액과 혼합하였을 때의 EC 변화와 이온 농도를 분석하고 비교하였다. 재사용 양액에서의 K+ : Ca2+와 SO42- : NO3-와 같은 이온 간의 비율 변화를 조사하였다. 첫번째 실험에서의 이온 농도의 변화 범위는 각각 K+ 1.13, Ca2+ 5.35, Mg2+ 0.92, NO3- 0.9 SO42- 1.10, PO43- 0.19meq·L-1이었다. 이온 간의 비율 변화는 양이온에서는 주로 K+ : Ca2+을 중심으로 음이온에서는 NO3- : SO42-을 중심으로 나타났다. 두 번째 실험에서 배액율에 따른 배액의 배액율이 증가함에 따라 점차 감소하는 경향을 나타냈다. 배액 내 각 이온의 농도도 배액율의 증가에 따른 감소 경향을 보였다. 배액율에 따른 배액 내 이온 간의 비율 변화에는 차이가 없었다. 그러나 배액을 희석하고 새로 조성한 양액과 혼합함에 따라 교정 효과에 차이가 나타났다. 7% 의 배액율이 새 양액의 이온 비율에 가장 근접하였으며, 16%, 51% 39% 순으로 교정되었다. 교정에 따른 이온 비율 변화는 K+ : Ca2+와 NO3-와 PO43-를 중심으로 나타났다.
수중 지표동물인 어류의 137Cs 및 85Sr 전이계수 측정 실험이 수행되었다. 실험 어종은 우리나라 고유 담 수종인 버들치(Chinese Minnow, Rhynchocypris Oxycephalus)였다. 버들치는 가로, 세로, 높이가 각각 45cm, 85cm, 50cm의 아크릴 수족관 내에서 사육되었다. 수족관 물은 바닥과 벽면에 설치된 여과기에 의 해 연속적으로 정화되었다. 먹이로는 과립 형태의 어류 분말을 1일 2회 투여하였다. 수중 137Cs 과 85Sr의 초 기 농도가 각각 약 0.02μCi/l 및 0.1μCi/l가 되도록 방사성 용액을 가한 다음 1개월 간 총 10회에 걸쳐 어 류와 물 시료를 채취하였다. 전이계수는 137Cs 이 (0.085 ~ 3.988)lkg-1, 85Sr는 (0.348 ~ 13.906)lkg-1로 측정 되었다.
피트모스를 기본으로 한 3종의 혼합 고형배지의 물리화학적 특성 분석과 3종의 배지 및 양액농도(EC 0.5~1.5dS·m-1가 토마토(일광 토마토 ) 플러그묘의 초기생장(파종 후 31일째)에 미치는 영향을 조사하였다. 혼합배지의 물리화학적 특성은 피트모스의 혼입비율이 많아질수록 보수력이 증가하였고, 공극율은 모든 혼합 배지 처리에서 80% 이상이었다. pH와 EC피트모스의 혼입비율이 많을수록 pH는 낮아졌고, EC는 전반적으로 3.6~4.8dS·m-1 정도의 범위로 비교적 높게 나타났다. 양질의 토마토 플러그묘 생산에 가장 좋았던 혼합배지는 피트모스:왕겨:훈탄:부숙톱밥:펄라이트=25:10:25:20:20(v/v)였다. 관비 양액농도(EC)는 대조구(수돗물, EC 1dS·m-1)에 비해 관비 양액농도(EC 0.5, 1.0, 1.5dS·m-1)가 높아질수록 초장, 엽면적 및 총건물 생산량 등이 현저히 높아졌다.
오이['장형흑진주' 오이; (주)서울종묘]를 공시작물로 하여 양질의 플러그묘 생산을 위한 혼합배지 개발과 적정 관비 양액 농도를 규명하기 위해 수행하였다. 혼합배지는 피트모스를 기본으로 왕겨, 훈탄, 부숙톱밥, 펄라이트 및 입상압면 등을 상이한 비율로 혼합하여 5처리로 하였고, 그 중 양호한 혼합배지 3종을 선발하여 관비 양액 농도(EC)를 대조구(EC 0.1dS·m-1), 0.5, 1.0 및 1.5dS·m-1등으로 처리하여 오이 유묘의 생장반응(27일째)을 검토하였다. 오이 플러그묘 생장에 양호한 혼합배지는 피트모스:왕겨:훈탄:부숙톱밥:펄라이트=25:10:25:20:20(v/v), 피트모스 왕겨:부숙 톱밥:입상암면=30:25:20:25(v/v) 및 피트모스:왕겨:부숙톱밥=40:40:20(v/v)였다. 대조구 (EC 0.1 dS m-l)에 비해 관비 양액의 농도가 높아질수록 초장, 엽면적 및 총건물생산량 등이 현저히 높아 EC 1.5dS·m-1로 두상관수 2-3회 관비하였을 때 가장 좋은 플러그묘를 생산할 수 있었다. 관비 양액 농도와 혼합배지 종류 처리간에는 유의차가 인정되지 않았다.
This study assessed the characteristic of BTEX (Benzene, Toluene, Ethylbenzene, Xylene) concentration ratios of industrial emission sources and the neighborhoods of industrial area, fuel such as gasoline, light oil, LPG, and similar gasoline, and ambient air in Daegu. The BTEX in aromatic compounds was the most abundant VOC in Daegu. The BTEX ratios were (0.2:2.6:1.0:1.8) for the neighborhoods of industrial area, (2.6:11.3:1.0:1.2) for residential area, (2.2:11.0:1.0:1.6) for commercial area, (1.0:14.9:1.0:1.3) for industrial area, and (0.2:2.6:1.0:1.8) for the neighborhoods of industrial area. Average BTEX ratios in Daegu were B/T ratio (0.1), B/EB ratio (1.5), B/X ratio (1.1), T/EB ratio (12.6), T/X ratio(10), EB/X ratio (0.7). Expecially, B/T ratio in Daegu was similar as the other cities, Bangkok, Manila, and Hongkong. Comparing other cities with B/T ratio, the main sources of VOC were vehicular exhaust and emission of industrial facilities. Furthermore, BTEX correlation were evaluated at the emission sources and regional areas. Results showed that correlation coefficient values of emission sources, fuels and neighborhood of industry were significant magnitude above 0.65(p<0.01). Also, there showed highly significant correlations among BTEX. Calculated correlation coefficients of ambient air sampling sites were 0.61~0.954 for commercial /residential area and 0.613~0.998 for industrial area. However, they showed different correlation between commercial/residental area and industrial area. It implied that the emission sources were different from each area.
The basic mechanism of the granular sludge formation which is the most important factor in the start-up and stable operaton is not confirmed yet. In this study, the effect of granular sludge formation was investigated with the different substrate concentrations and the various ratios of substrate supply/deficiency. The granular sludge formation in the UASB reactor was closely related to the substrate concentrations and the ratio of substrate supply/deficiency. The granular sludge formation was not accelerated at low substrate concentration. It was convinced that granular sludge formation was accelerated when the substrate supply with high concentration was stopped at UASB reactor. From this experiment, it was estimated that granular sludge was formed by the combination of hydrogen utilizing bacteria that form hydrogen condition and acid forming bacteria at substrate deficit condition by mutual symbiosis. Though the removal efficiency of organic matter was decreased as the influent substrate concentration was increased, the higher the influent substrate the better the granular sludge formation.