The sintering mechanisms of nanoscale copper powders have been investigated. A molecular dynamics (MD) simulation with the embedded-atom method (EAM) was employed for these simulations. The dimensional changes for initial-stage sintering such as characteristic lengths, neck growth, and neck angle were calculated to understand the densification behavior of copper nano-powders. Factors affecting sintering such as the temperature, powder size, and crystalline misalignment between adjacent powders have also been studied. These results could provide information of setting the processing cycles and material designs applicable to nano-powders. In addition, it is expected that MD simulation will be a foundation for the multi-scale modeling in sintering process.
In this study, the behavior of densification of copper powders during high-pressure torsion (HPT) at room temperature is investigated using the finite element method. The simulation results show that the center of the workpiece is the first to reach the true density of copper during the compressive stage because the pressure is higher at the center than the periphery. Subsequently, whole workpiece reaches true density after compression due to the high pressure. In addition, the effective strain is increased along the radius during torsional stage. After one rotation, the periphery shows that the effective strain is increased up to 25, which is extensive deformation. These high pressure and severe strain do not only play a key role in consolidation of copper powders but also make the matrix harder by grain refinement.
In this study, nano-scale copper powders were reduction treated in a hydrogen atmosphere at the relativelyhigh temperature of 350℃ in order to eliminate surface oxide layers, which are the main obstacles for fabricating anano/ultrafine grained bulk parts from the nano-scale powders. The changes in composition and microstructure beforeand after the hydrogen reduction treatment were evaluated by analyzing X-ray diffraction (XRD) line profile patternsusing the convolutional multiple whole profile (CMWP) procedure. In order to confirm the result from the XRD lineprofile analysis, transmitted electron microscope observations were performed on the specimen of the hydrogen reduc-tion treated powders fabricated using a focused ion beam process. A quasi-statically compacted specimen from the nano-scale powders was produced and Vickers micro-hardness was measured to verify the potential of the powders as thebasis for a bulk nano/ultrafine grained material. Although the bonding between particles and the growth in size of theparticles occurred, crystallites retained their nano-scale size evaluated using the XRD results. The hardness results dem-onstrate the usefulness of the powders for a nano/ultrafine grained material, once a good consolidation of powders isachieved.
In this study, electrolytic copper powders were consolidated by high-pressure torsion process (HPT) which is the most effective process to produce bulk ultrafine grained and nanocrystalline metallic materials among various severe plastic deformation processes. The bulk samples were manufactured by the HPT process at 2.5 GPa and 1/2, 1 and 10 turns. After 10 turns, full densification was achieved by high pressure with shear deformation and ultrafine grained structure (average grain size of 677 nm) was observed by electron backscatter diffraction and a scanning transmission electron microscope.
The thermal dissipation performance of sintered heat pipes is usually determined by the capillarity and permeability of the Cu powder wicks. Since the capillary provided by the Cu powder is usually large enough to draw water from the condenser end to the evaporator end, the permeability has become the controlling factor. In this study, Cu powders with different particle sizes and shapes were loosely sintered, and their permeabilities were compared. The results show that more complicated shapes, finer particle sizes, lower porosities, and rougher pore surfaces give lower permeability and thermal dissipation.
Ultrafine copper powder was prepared from slurry with hydrazine, a reductant, under . The influence of various reaction parameters such as temperature, reaction time, molar ratio of , PvP and NaOH to Cu in aqueous solution had been studied on the morphology and powder phase of Cu powders obtained. The production ratio of Cu from CuO was increased with the ratio of and the temperature. When the ratio of was higher than 2.5 and the temperature was higher than , CuO was completely reduced into Cu within 40 min. The crystalline size of Cu obtained became fine as the temperature increase, whereas the aggregation degree of particles was increased with the reaction time. The morphology of Cu powder depended on that of the precursor of CuO and processing conditions. The average particle size was about
The reduction mechanism of the composite powders mixed with and CuO has been studied by using thermogravimetry (TG), X-ray diffraction, and microstructure analyses. The composite powders were made by simple Turbula mixing, spray drying, and ball-milling in a stainless steel jar with the ball to powder ratio of 32 to 1 at 80 rpm for 1 h without process controlling agents. It is observed that all the oxide composite powders are converted to W-coated Cu composite powder after reducing treatment under hydrogen atmosphere. For the formation mechanism of W-coated Cu composite powder, the sequential reduction steps are proposed as follows: CuO contained in the ball-milled composite powder is initially reduced to Cu at the temperature range from 20 to 30. Then, powder is reduced to W via W and W at higher temperature region. Finally, the gaseous phase of formed by reaction of with water vapour migrates to previously reduced Cu and deposits on it as W reduced by hydrogen. The proposed mechanism has been proved through the model experiment which was performed by using Cu plate and powder.der.