지진이라는 재해는 인류가 직면하고 있는 재해 중 가장 파괴적인 자연재해 중 하나로 인명, 자연을 포함한 인프라, 경제에도 지대한 영향을 끼질 수 있다. 세계적으로도 최근 수년간 환태평양 조산대를 기점으로 지진의 빈도가 꾸준히 증가해왔으며 강도 또한 상승해져왔다. 규모가 7 가량을 넘는 지진부터는 인류가 대처하기 힘들만큼 많은 에너지가 발생되며 특히나 우리나라와 밀접히 인접해 있는 일본의 경우 난카이 대지진과 같은 이슈가 발생하여 그 경계의식이 높아진 실정이다. 따라서 이에대한 지진 에너지를 효과적으로 흡수하고 분살시킬 수 있는 댐퍼장치들이 많이 발명되었고 여기에 적용되는 많은 압축 소재들이 개발되고 있다. 현재까지는 많은 댐퍼 장치가 고무를 압축재료로 사용하고 있으며 이를 대체하기 위해 폴리우레탄이라는 고분자 재료가 개발되었지만 낮은 하중에도 쉽게 변형이 발생하는 한계가 발생하는 문제가 있다. 따라서 본 연구에서는 폴리케톤이라는 물질을 재료적 성능 평가를 통해 제안한다. 폴리 케톤은 합성될 때 일산화탄소를 매개로 하기 때문에 탄소저감에도 효과적인 물질이다. 이러한 폴리케톤을 폴리우레탄과 반복 압축 실 험을 통해 비교하였으며 시편의 길이, 선행압축의 유무 등의 변수를 적용하여 실험을 진행하였다. 이후 힘-변형 그래프, 최대 압축성능, 에너지 소산 능력, 초기회복력 등의 성능을 확인하였다. 실험 결과 모든 결과가 폴리케톤이 폴리우레탄보다 우수한 성능을 나타냈으며 내진 구조용 압축소재로서의 적용 가능성을 입증하였다.
본 연구는 Tuned Mass Damper(TMD)가 적용된 원자력 발전소 파이핑 시스템의 동적 응답 저감 효과를 평가하기 위해 수행되었다. ABAQUS를 활용하여 실제 크기의 파이핑 시스템 유한요소 모델을 개발하고, 실험 데이터를 통해 모델의 적합성을 검증하 였다. 이후, 확장된 수치해석을 통해 국부 손상 발생 시 TMD의 응답 저감 효과를 분석하였다. 연구 결과, TMD는 무손상 상태에서 가속도와 변위 응답을 각각 최대 20%와 30% 저감하는 효과를 보였으며, 특정 국부 손상(30%, 50%, 70%)에서도 저감 효과가 유지됨 을 확인하였다. 이는 국부 손상이 시스템의 주파수 특성에 미치는 영향이 제한적임을 시사한다. 그러나 손상의 위치와 응답 특성에 따라 저감 효과에는 차이가 있었으며, 최대 응답 위치에서 TMD의 효과가 보다 두드러졌다. 본 연구는 선형 해석에 초점을 맞췄으며, 향후 비선형 재료 특성과 다양한 지진 조건을 고려한 추가 연구가 필요함을 제안한다.
최근 인접국가인 일본에서 규모 7.6의 지진이 발생하였다. 이 지진은 대규모의 최초 지진 이후 120회 이상의 여진을 동반하여 지진의 위험성이 두각되었다. 실제로 구조물들은 최초 지진이후 항복하여 지속되는 여진에 의해서도 붕괴될 위험이 있기 때문에 지진 저항력을 향상시킬 필요가 있다. 본 연구에서는 자동복원이 가능한 신소재를 활용하여 지진에 의한 피해를 감소시키면서도 댐퍼와 구조물에 발생되는 잔류변위를 회복시킬 수 있는 자동복원 신소재 댐퍼를 제안한다. 이 댐퍼는 초탄성 형상기억합금과 폴리우레탄으로 구성되며 폴리우레탄에는 선행압축이 적용되어 그로 인한 반발력을 통해 회복특성을 증진시킨 다. 이에 대한 성능을 평가하기 위해 구조실험과 구조실험에 대한 수치해석을 진행하여 댐퍼의 회복특성, 하중특성을 확인하였 다. 또한, OpenSEES프로그램을 활용하여 구조물에 댐퍼를 적용시키고 실제 지진환경에 대한 수치해석을 수행함으로써 지붕변 위, 밑면 전단력 등의 응답을 구하여 자동복원 신소재 댐퍼의 우수성을 검증하였다. 이를 통해 자동복원 신소재 댐퍼를 구조물 에 적용하게 되면 국내 역대 지진 중 가장 규모가 큰 지진이 다시 발생하여도 구조물을 다시 회복할 수 있을 것으로 기대된다.
In this study, the displacement dependence, strength, and energy dissipation capacity of the steel rod damper were evaluated. The test variables are the number of steel rod dampers and the lateral deformation prevention details. From test results, it was evaluated that the displacement dependence conditions in the structural design code were satisfied. The maximum strength and energy dissipation capacity increased linearly as the number of steel rod increased. In addition, the maximum strength and energy dissipation capacity were evaluated by more than 20 times increased by using of the lateral deformation prevention details.
In the case of a school building, even though it is a regular structure in terms of plan shape, if the masonry infill wall acts as a lateral load resisting element, it can be determined as a torsionally irregular building. As a result, the strength and ductility of the structure are reduced, which may cause additional earthquake damage to the structure. Therefore, in this study, a structure similar to a school building with torsional irregularity was selected as an example structure and the damping performance of the PC-BRB was analyzed by adjusting the eccentricity according to the amount of masonry infilled wall. As a result of nonlinear dynamic analysis after seismic reinforcement, the torsional irregularity of each floor was reduced compared to before reinforcement, and the beams and column members of the collapse level satisfied the performance level due to the reduction of shear force and the reinforcement of stiffness. The energy dissipation of PC-BRB was similar in the REC-10 ~ REC-20 analytical models with an eccentricity of 20% or less. REC-25 with an eccentricity of 25% was the largest, and it is judged that it is effective to combine and apply PC-BRB when it has an eccentricity of 25% or more to control the torsional behavior.
In this study, based on the research results of the steel plate and steel rod dampers with rocking behavior, the moment and the drift ratio were compared and evaluated. As a test result evaluation, it was showed that the behavior of R15-200 and R15-140 was very good than other dampers. And the steel rod damper showed in-plane behavior to the loading direction, and was evaluated to prevent out-of-plane behavior that causes performance degradation.
The energy dissipation of inverted V-type eccentric steel braced frames can be achieved through the yielding of a slit link, through yielding of a number of strips between slits when the frame is subjected to inelastic cyclic deformation. On the other hand, the development of seismic resistance system without residual deformation is obtained by applying the superelasdtic shape memory alloy (SMA) material into the brace and link elements. This paper presents results from a systematic three-dimensional nonlinear finite element analysis on the structural behavior of the eccentric bracing systems subjected to cyclic loadings. A wide scope of structural behaviors explains the horizontal stiffness, hysteretic behaviors, and failure modes of the recentering eccentric bracing system. The accurate results presented here serve as benchmark data for comparison with results obtained using modern experimental testing and alternative theoretical approaches.
The use of dampers is being considered a means to improve the seismic performance of buildings. It may take considerable time and effort to find an optimal design solution since repeated three-dimensional nonlinear time history analyses are required. Therefore, a preliminary design procedure for seismic retrofit using hysteretic dampers was proposed in this study. In the proposed procedure, the amount of retrofit (required number of dampers) is estimated from the capacity curve of the building before retrofit and allowable story drift of the building. In combining the capacity curves of the building and the dampers, the deformation demand for the dampers can be easily checked against their deformation capacity. The equations to transform the device displacement to roof displacement for the combination of capacity curves are developed. The proposed procedure was applied to the seismic retrofit design of sample buildings. The study found that the estimated capacity curve was very close to the actual capacity curve obtained from the pushover analysis, which can determine an appropriate configuration to meet the required seismic performance.
본 논문는 개폐식 대공간 구조물의 지진하중에 대한 동적응답을 줄이기 위한 목적으로 파라메트릭 설계 기법을 적용한 TMD에 관한 연구이다. 인공지능 알고리즘을 이용하여 감쇠장치의 설치 위치를 자동 탐색하는 컴포넌트를 개발하였다. 이는 구조물의 동적응답을 실시간으로 확인하고, 구조물의 감쇠장치 최적의 위치를 찾을 수 있을 있다. 또한, 여러 대안에 대한 감쇠장치 질량의 최적 값을 찾아주며, 지붕의 열린 상태와 닫힌 상태에 모두 효과적으로 적용될 수 있는 설계안을 찾을 수 있다.
본 연구에서 적용한 SMRPF system은 구조물 접합부의 패널존을 고려하는 동시에 지진하중에 대하여 각층별 전단력을 산정하여 댐퍼의 감쇠력과 변위를 결정해준다. 이는 내진설계가 반영되지 않은 구조물에 적용할 경우 부재단면을 변경하지 않고 내진성능을 확보 할 수 있는 감쇠기의 역량 결정이 가능함을 보여 주었다. 또한 본 논문에서 적용한 유전자 알고리즘을 통해 최적설계를 수행한 결과, 무보강 구조물에 비해 점성감쇠기와 패널존을 고려한 SMRPF 강골조 구조물의 총 중량이 약 50%이상 감소되는 것이 확인되었다.
The present study is aimed to calculate the optimal damping according to the seismic load on the structure with a non-seismic design to perform structure analysis considering the deformation of structural joint connection and panel zone; to develop design program equipped with structural stability of the steel frame structures reinforced with the panel zone and viscous dampers, using the results of the analysis, in order to systematically integrate the seismic reinforcement of the non-seismic structures and the analysis and design of steel frame structures. The study results are as follows: When considering the deformation of the panel zone, the deformation has been reduced up to thickness of the panel double plate below twice the flange thickness, which indicates the effect of the double plate thickness on the panel zone, but the deformation showed uniform convergence when the ration is more than twice. The SMRPF system that was applied to this study determines the damping force and displacement by considering the panel zone to the joint connection and calculating the shear each floor for the seismic load at the same time. The result indicates that the competence of the damper is predictable that can secure seismic performance for the structures with non-seismic design without changing the cross-section of the members.
In this study, SMG(Smart Material with Grease) was developed, which was improved the precipitation minute particle in grease during long term standstill. Also, small-sized cylinder damper equipped with an electromagnet in a piston was developed for using a performance evaluation of the damper with SMG and the dynamic load test, and damping force using Power model and Bingham model was derived in order to compare to the result of that of the damper. The data obtained from the dynamic load test were analyzed and plotted, and then a dynamic range was calculated to evaluate the usability of the damper with SMG. The performance of the damper with SMG was compared to the damping forse derived from the Power and Bingham model. The result of this evaluation shown that the usability of SMG damper was demonstrated by this test as a semi-active controlling equipment of small-sized damper.
In this study, a design procedure for the practical application of the dampers to building structures under earthquake loads was presented by using earthquake response spectrum. Nonlinear time history results using a 10 story building structure installed with damper verified the effectiveness of the proposed procedure by showing that the structural response could be reduced to the target performance level for seismic loads. Since the proposed design procedures are based on response spectrum seismic analysis result of the original structure, the capacity, location and the number of damper and the consequent response reduction effects can be preliminarily determined without performing the nonlinear time history analysis.
In this study, the effectiveness of a multi-action hybrid damper (MHD) composed of lead rubber bearing (LRB) and friction pad was verified in terms of seismic performance improvement of a frame structure. The LRB and the friction elements are connected in series, so the LRB governs the intial small deformation and the friction determines large deformation behavior. Cyclic loading tests were conducted by using a half scale steel frame structure with the MHD, and the results indicated that the structure became to have the stable trilinear hysteresis with large initial stiffness and first yielding due to the LRB, and the second yielding due to the friction. The MHD could significantly increase the energy dissipation capacity of the structure and the hysteresis curves obtained by tests were almost identical to the analytically estimated ones.
This study investigates the seismic performance of a hybrid seismic energy dissipation device composed of a viscoelastic damper and a steel slit damper connected in parallel. A moment-framed structure is designed without seismic load and is retrofitted with the hybrid dampers. The model structure is transformed into an equivalent simplified system to find out optimum story-wise damper distribution pattern using genetic algorithm. The effectiveness of the hybrid damper is investigated by fragility analysis of the structure with and without the dampers. The analysis results show that after seismic retrofit the probability of reaching damage states, especially the complete damage state, of the structure turn out to be significantly reduced.
In this study, dynamic vertical displacement of liquid in the tuned liquid column damper(TLCD) is measured by a laser Doppler vibrometer(LDV) to overcome limitations of existing sensors and to leverage noncontact sensing. Addressing advantages of noncontact measurements, operational principles of the LDV to measure velocity and displacement of a target object in motion is explained. The feasibility of application of the LDV to measurement of liquid motion in the TLCD is experimentally explored. A series of shake table tests with the TLCD are performed to determine requirements of application of the LDV. Based on the experimental results, it is proved that the LDV works under the condition of adding dye to the liquid by increasing the intensity of reflected laser and thus validity is verified by comparison with a conventional wave height meter.
It has been many efforts for reinforcement of existing structure since the number of earthquake has been increased world widely. Especially the occurrence of earthquake surrounding area of Korean peninsular is dramatically increased. Since the buildings in Korea have not been designed to carry the lateral and shear force caused by earthquake, the building will experience massive damages even under moderate earthquake. For this reason, the viscoelastic damper is proposed in this paper to enhance the earthquake resistance of a steel frame buildings. The viscoelastic dampers have been able to increase the overall damping of the structure significantly, hence improving the overall performance of dynamically sensitive structures. In this paper, Viscoelastic dampers designed are consists of FRP panel and viscoelastic material. In this paper, evaluate the performance of the viscoelastic damper through the experiment.
본 연구에서는 인천공항 제2계류장 관제소에 설치될 예정인 AMD에 선형제어알고리즘인 속도피드백 알고리즘을 적용하여 제어효율 및 안전성을 평가하였다. 공장성능시험 결과와 수치해석 프로그램의 해석결과를 비교하여 AMD가 설계의도대로 제어를 수행하는지 여부를 분석하였다. 또한 제어알고리즘에 의한 순수제어력에 추가되는 게인스케줄링과 원점보정신호가 제어력에 미치는 영향을 실험을 통해 확인하였다. AMD의 성능시험 결과 게인스케줄링과 원점보정신호는 제어효율에 큰 영향을 미치지 않음을 확인하였으며, 구조물에 큰 외력이 작용하는 경우에 발생하는 AMD 질량체의 과도한 이동으로 인해 구조물에 손상을 입힐 수 있는 문제에 대한 안전성을 검증하였다. 추가적으로 제어효율지수를 도입하여 AMD의 제어 상태를 모니터링한 결과, 적용된 알고리즘이 효과적으로 구조물을 제어함을 확인하였다.
A multi-input single-output (MISO) semi-active control systems were studied by many researchers. For more improved vibration control performance, a structure requires more than one control device. In this paper, multi-input multi-output (MIMO) semi-active fuzzy controller has been proposed for vibration control of seismically excited small-scale buildings. The MIMO fuzzy controller was optimized by multi-objective genetic algorithm. For numerical simulation, five-story example building structure is used and two MR dampers are employed. For comparison purpose, a clipped-optimal control strategy based on acceleration feedback is employed for controlling MR dampers to reduce structural responses due to seismic loads. Numerical simulation results show that the MIMO fuzzy control algorithm can provide superior control performance to the clipped-optimal control algorithm.
This study proposed simply design procedure of a single degree of freedom (SDOF) structure equipped with friction dampers. General method is suggested in order to reduce the structural seismic response by using friction dampers. The analysis model was transformed into an equivalent mass-spring-dashpot system by approximating nonlinear friction damping force with equivalent viscous damping force. A closed form solution for dynamic amplification factor (DAF) for steady-state response was derived by the energy balance equation. The equivalent damping ratio was defined by using DAF at natural frequency. The transfer function between input harmonic excitation and output structural response was obtained from the DAF, and the response reduction factor of the root mean square (RMS) for displacements without and with friction dampers was analytically determined. Using the proposed procedure the friction force required for satisfying given target response reduction factor was obtained. Mean response reduction factors matched well with the target values based on the dynamic analysis results. It is concluded that the proposed method is quite simple for the design of friction dampers to reduce seismic response of the structure.