This study aims to estimate the scope of damage impact with a real-life explosion case and a damage prediction program (ALOHA) and suggest measures to reduce risk by comparing and analyzing the results using a Probit model. After applying it to the ALOHA program, the toxicity, overpressure, and radiant heat damage of 5 tons of storage scopes between 66 to 413 meters, and the real-life case also demonstrated that most of the damage took place within 300 meters of the LPG gas station. In the Probit analysis, the damages due to radiant heat were estimated as first-degree burns (13-50%), while structural damage (0-75%) and glass window breakage (94-100%) were expected from overpressure, depending on the storage volume. After comparing the real-life case and the damage prediction program, this study concluded that the ALOHA program could be used as the scope of damage impacts is nearly the same as the actual case; it also concluded that the analysis using the Probit model could reduce risks by applying calculated results and predicting the probability of human casualties and structural damages.
Ethanol production from various agricultural and forest residues has been widely researched, but there is limited information available on the use of mixed hardwood for ethanol production. The main objective of this study is to assess the impact of time on the steam explosion pretreatment of waste wood (mixed hardwood) and to determine the convenience of a delignification step with respect to the susceptibility to enzymatic hydrolysis of the cellulose residue and the recoveries of both cellulose and hemicellulosic sugars. Delignification did enhance enzymatic hydrolysis yields of steam exploded waste wood. For steam explosion pretreatment times of 3 and 5 min, the recovery yield of hemicellulosic-derived sugars decreased. The effective hemicellulose solubilization does not always result in high recoveries of hemicellulose-derived sugars in the liquid fractions due to sugar degradation. In the steam explosion pretreatment times of 3 and 5 min, where hemicellulose solubilization exceeded 95%, but sugar recoveries in the liquid fraction remained below 30%. Cellulose to glucose yield losses were less significant than hemicellulosic-sugar losses, with a maximum loss of 24% at 5 min. Up to 80% of the lignin in the original wood was solubilized, leaving a cellulose-rich residue that led to a concentrated cellulose to glucose yield solution (about 50 g/L after 72 h enzymatic hydrolysis in the best case). The maximum overall process yield, taking into account both sugars present in the liquid from steam explosion pretreatment and cellulose to glucose yield from the steam exploded, delignified and hydrolyzed solid was obtained at the lowest steam explosion pretreatment time assayed.
최근 원자력 지진 PSA(Probabilistic Safety Assessment)를 토대로 산업시설물의 지진 PSA를 수행하는 연구가 진행되었다. 해당 연 구는 원자력 발전소와 산업시설물의 차이를 파악하고, 최종적으로 운영정지를 목표로 하는 고장수목(Fault Tree)를 구축한 후 시각적 확률도구인 베이지안 네트워크(Bayesian Network, BN)으로 변환하였다. 본 연구는 선행연구를 기반으로 지진으로 유발된 구조손상 으로 인해 발생 가능한 화재・폭발에 대해 PSA를 수행하고자 하였다. 이를 위해 화재・폭발을 사건수목(Event Tree)으로 표현하고, BN 으로 변환하였다. 변환된 BN은 화재・폭발 모듈로서 선행연구에서 제시된 고장수목 기반 BN과 연계되어 최종적으로 지진 유발 화재・ 폭발 PSA를 수행할 수 있는 BN 기반 방법론이 개발되었다. 개발된 BN을 검증하기위해 수치예제로서 가상의 가스플랜트 Plot Plan을 생성하였고, 가스플랜트의 설비 종류가 구체적으로 반영된 대규모 BN을 구축하였다. 해당 BN을 이용하여 지진 규모에 따른 전체시 스템의 운영정지 확률 및 하위시스템들의 고장확률 산정과 더불어 역으로 전체시스템이 운영 정지되었을 때 하위시스템들의 영향도 분석과 화재・폭발 가능성을 산정하여 다양한 의사결정을 수행할 수 있음을 제시함으로써 그 우수성을 확인하였다.
PURPOSES : This study analyzes the accident damage scale of hazardous material transportation vehicles not monitored in real time by the Hazardous Material Transportation Safety (HMTS) management center. METHODS : To simulate hazardous-material transportation vehicle accidents, a preliminary analysis of transportation vehicle registration status was conducted. Simulation analyses were conducted for hazardous substance and flammable gas transportation vehicles with a high proportion of small- and medium-sized vehicles. To perform a spill accident damage-scale simulation of hazardous-substance transportation vehicles, the fluid analysis software ANSYS Fluent was used. Additionally, to analyze explosion accidents in combustible gas transportation vehicles, the risk assessment software Phast and Aloha were utilized. RESULT : Simulation analysis of hazardous material transportation vehicles revealed varying damage scales based on vehicle capacity. Simulation analysis of spillage accidents showed that the first arrival time at the side gutter was similar for various vehicle capacities. However, the results of the cumulative pollution analysis based on vehicle capacity exhibited some differences. In addition, the simulation analysis of the explosion overpressure and radiant heat intensity of the combustible gas transportation vehicle showed that the difference in the danger radius owing to the difference in vehicle capacity was insignificant. CONCLUSIONS : The simulation analysis of hazardous-material transportation vehicles indicated that accidents involving small- and medium-sized transportation vehicles could result in substantial damage to humans and ecosystems. For safety management of these small and medium-sized hazardous material transportation vehicles, it is expected that damage can be minimized with the help of rapid accident response through real-time vehicle control operated by the existing HMTS management center.
본 논문에서는 상용 프로그램 MIDAS GEN을 활용하여 플랜트 시설물의 특성을 반영한 골조와 단일 부재의 비선형 동적 해석을 수 행하였으며 이에 따른 결과를 분석하였다. 플랜트에 배치되는 일반적인 구조 부재의 크기와 재료적 특성을 고려하였으며, 수치해석 방법 중 뉴마크 평균 가속도법, 재료 비선형을 고려하기 위한 소성 힌지를 적용하였다. 플랜트 폭발의 대표적 유형인 증기운 폭발의 폭 발하중을 산정하였으며, 이를 골조 및 단일 부재에 적용하여 비선형 동적 해석을 수행하였다. 동적 거동의 결과는 고유주기와 하중지 속시간의 비율, 최대변위, 연성도, 회전각으로 정리하였으며 골조를 단일 부재로 해석할 수 있는 조건과 범위를 분석 및 확인하였다. 보-기둥 강성비가 0.5, 연성도가 2.0 이상인 NSFF는 FFC로 단순화할 수 있으며, 보-기둥 강성비가 0.5, 연성도가 1.5 이상인 NSPF는 FPC로 단순화하여 해석할 수 있다. 본 연구의 결과는 플랜트 시설물의 내폭설계 가이드라인으로 활용될 수 있다.
Ni-CNT nanocomposites were synthesized via the electrical explosion of wire (EEW) in acetone and deionized (DI) water liquid conditions with different CNT compositions. The change in the shape and properties of the Ni-CNT nanopowders were determined based on the type of fluids and CNT compositions. In every case, the Ni nanopowder had a spherical shape and the CNT powder had a tube shape. However, the Ni-CNT nanopowders obtained in DI water exhibited irregular shapes due to the oxidation of Ni. Phase analysis also revealed the existence of nickel oxide when using DI water, as well as some unknown peaks with acetone, which may form due to the metastable phase of Ni. Magnetic properties were investigated using a Vibrating Sample Magnetometer (VSM) for all cases. Nanopowders prepared in DI water conditions had better magnetic properties than those in acetone, as evidenced by the simultaneous formation of super paramagnetic NiO peaks and ferromagnetic Ni peaks. The DI water (Ni:CNT = 1:0.3) sample revealed better magnetic results than the DI water (Ni-CNT = 1:0.5) because it had less CNT contents.
본 논문에서는 확률론적 처리기법을 적용하여 플랜트 시설물의 폭발 재현주기에 따른 폭발 위험도를 분석하였다. HSE에서 제공하 는 누출 데이터, DNV에서 제시한 플랜트당 연간 누출 빈도, 다양한 연구진이 제시한 점화 확률을 고려하여 누출량에 따른 폭발 재현 주기를 산정하였다. 산정된 폭발 재현주기를 통해 폭발 위험도를 증기운의 부피 및 반경, 폭발하중에 대하여 평가하였다. 재현주기에 따른 증기운의 반경과 과거 실제 증기운 폭발 사례, 내폭설계 가이드라인을 비교 분석하여 설계폭발하중 모델을 위한 기준거리를 제 시하였다. 멀티에너지법을 통하여 폭발 재현주기에 따른 폭발하중의 범위를 분석하였으며, 설계폭발하중 모델의 기준이 되는 재현주 기를 제안하였다. 본 연구의 결과로 플랜트 시설물에 대한 성능기반 내폭설계의 간략한 표준안으로 활용이 가능하다.
Mental distress has been consistently reported to be highly prevalent after collective traumas, alongside physical and personal damages. When left untreated, these will worsen survivors’ ability to function. Research also points to unmet needs, related to job security and a sense of belonging. Our study aims to identify a clustered-dimensional approach to people’s experiences after a massive urban violence apart from traditional categorical psychopathological assessments. This cross-sectional internet-based study included 1305 Lebanese adults, 4 months after the apocalyptic Beirut Port explosion. Emotions, attitudes and needs were assessed using iCode software, measuring explicit answers and implicit reaction time. First and foremost, explicit responses revealed alarming levels of distress (75-80%). Latent class analysis further differentiated three groups on seven different dimensions derived from principal component analysis. People who experienced the most intense emotional distress and intrusive thoughts had higher country dissatisfaction and job worries. Faith and community resilience buffered the negative emotionality of those affected in spite of avoidance and intrusion. The last group was less distressed by the trauma with a marked sense of community and an overall reduced country and job dissatisfactions. These findings suggest that integrating implicit responses helps cluster people’s experiences after a collective trauma above and beyond single demographic criteria as vulnerability to mass violence is quite variable within seemingly homogenous samples. They also provide insight onto hard-wired attitudes and needs post-trauma. It mostly taps into multi-factorial individual vulnerabilities and protective factors to better refine targeted interventions for at-risk subpopulation outreach and foster resilience in unstable environments.
Determination of explosion reference pressure is important in designing and testing flameproof enclosures (Ex d). Although relative humidity affects to explosion pressure, its effect is not well investigated for the gas group IIB, IIA, and I. This study tested explosion pressure for Ethylene (8 vol.%), Propane (4.6 vol.%), and Methane (9.8 vol.%), which are the representative gas of the gas group IIB, IIA, and I, at ambient temperature and atmospheric pressure (1 atm) under different relative humidity (0% ~ 80%). Ethylene- and Propane-air mixed gases generally tended to decrease as the relative humidity increased; however, explosion pressure was largely dropped at 20% of relative humidity compared to 0% and 10% of relative humidity. On the other hand, Methane-air mixture gas showed similar pressures at 0% and 10% of relative humidity; but no explosion occurred at more than 20%. The results of this study can be used in setting a testing protocol of explosion reference pressure for designing and testing a flameproof enclosure.
To test a flameproof enclosure for the safety certificate, a reference pressure of explosion needs to be determined. However, the explosion pressure may be changed according to relative humidity of explosive gases. Therefore, the guideline on relative humidity should be recommended for measuring the explosion pressure for accurate and reproducible testings. This study examined the relationship of explosion pressure with relative humidity of hydrogen (31 vol %)-air and acetylene (14 vol %)-air mixture gases. The explosion pressures were measured by increasing the relative humidity of the gases by 10 % from dry state to 80 % in a cylindrical explosion enclosure of 2.3 L. on ambient temperature and atmospheric pressure (1 atm). The maximum explosive pressures were remained almost constant until the relative humidity reached 10 % for the hydrogen-air mixture and 20 % for the acetylene-air mixture. However, the maximum explosive pressures linearly decreased as the relative humidity increased. Based on the results of the study, it would be recommended to use 10 % relative humidity for the hydrogen-air mixture and 20 % for the acetylene-air mixture as the critical value in testing a flameproof enclosure.
In response to the increase in international terrorism threats and demands for terrorism prevention and response activities, the Act on Counter-Terrorism for the Protection of Citizens and Public Security was enacted in 2016, and the need for research to strengthen protection against explosive threats was raised. In the same manner, the Design Basis Threats, which become the standard for the design and evaluation of physical protection systems for nuclear facilities, have been developed and it includes explosive threats. However, the regulatory standards for physical barriers against explosive threats are still not established. Therefore, it is first required to set up a performance database of physical barriers subject to blast loading in order to prepare the regulatory standards. In this study, the pressure with the trinitrotoluene (TNT) charge weights of 0.5-2 kg as a function of time was calculated using Ansys Autodyn software by assuming that the TNT is used for malicious purposes and is attached to a reinforced concrete (RC) corridor wall. The shape of the corridor was the 3×3×6 m cuboid with a rectangular hole of 1.78×1.78×6 m. The RC walls, which make up the corridor, contained the reinforcing bars with a spacing of 0.229 m and a diameter of 0.036 m. The spherical charge of a TNT was placed 0.2 m away from a RC wall in the middle of the corridor. To measure the reflected pressure after the internal explosion with a TNT, three pressure gauges were installed on the three sides of the RC walls in the middle of the corridor, respectively. The results showed that the peak reflected pressure on a RC wall with the standoff distance of 0.2 m was about ten times higher than the opposite RC wall with the standoff distance of 1.58 m in the same condition of TNT charge weight. Thus, it was verified that blast loads are highly affected by standoff distance. It seems that preventing the explosive detonation close to a physical barrier is strategically important to maintain the integrity of the physical barrier.
Nuclear power plants, which are important national facilities, require special attention against the threat of terrorism using various methods. Among the terrorist threats, as structural damage and human casualties due to explosions continue to occur, interest in the blast load is increasing. However, domestic nuclear power plants do not have sufficient design requirements for protection against the threat of explosives. To prepare for the threat of terrorism using explosives, it is necessary to evaluate the physical protection performance of nuclear power plants against blast load, and to use this to improve protection performance and establish regulatory standards. Most of the explosion-proof designs used abroad use the empirical chart presented by UFC 3-340- 02 (DoD 2008), which does not take into account the effect of near-field explosions. When explosions occur inside nuclear power plants, near-field explosions occur in most cases. In this study, it was assumed that explosives were installed in the corridor inside nuclear power plants. A spherical TNT was placed in the middle of the corridor floor to simulate near-field explosions, and the structure response according to the weight of the TNT was evaluated. The corridor was modeled with a reinforced concrete material and the LS-DYNA program was used for analysis. For the explosion model, the Arbitrary-Lagrangian-Eulerian (ALE) analysis technique applying the advantages of the Lagrangian and Eulerian methods were used. By analyzing the pressure history and the degree of deformation of the structure according to the explosion, the degree of threat caused by the explosion was analyzed. Based on the analysis of this study, physical barriers performance database (DB) using Modeling & Simulation (M&S) will be constructed by performing sensitive analysis such as representative structure shape setting, boundary conditions, material of structures, etc. The constructed DB is expected to be used to establish regulatory standards for the physical barriers of nuclear power plants related to explosives.
본 연구에서는 유한요소해석 D/B를 기반으로 보간식을 산출하여 개활지 폭발현상에 의해 기둥에 작용하는 폭압이력을 예측하는 모델을 개발했다. D/B 구성을 위해 7종류 기둥 너비에 대해 총 70회의 유한요소해석을 수행했다. 제안하는 방법의 성능확인을 위해, 기존에 제시된 경험식 기반의 예측식과의 비교연구를 수행했다. 또한, D/B를 구성하는 point 외의 영역에서의 예측 정확도 확인을 위 해 유한요소해석 결과와의 비교/검증 연구를 추가로 수행했다. 제안하는 방법은 기존의 경험식 기반 예측식에 비해 유한요소해석 결 과와 유사한 결과를 산출함을 확인했다.
증기운 폭발의 폭압을 예측하거나 위험성 분석을 위하여 다양한 폭압 산정법이 존재하지만 대표적으로 경험적 방법인 TNT 등가량 환산법과 멀티에너지법을 주로 사용한다. 멀티에너지법은 환경적 요인을 고려한 폭발강도계수를 사용한다. 본 연구에서는 문헌 분석 을 통하여 점화원 강도를 세분하고 강도분류를 확장하여 개선한 폭발강도계수 가이드라인을 제안하였다. 개선한 폭발강도계수 가이 드라인의 합리성 검증과 기존 Kinsella 가이드라인과의 비교를 위하여 실제 추정 폭압과 대조가 가능한 4가지의 증기운 폭발 사례를 적용하였다. 결과적으로 기존 Kinsella 가이드라인은 실제 추정 폭압에 비하여 광범위하거나 부정확한 폭압 산정 결과를 나타내는 것 으로 확인하였다. 반면, 개선한 폭발강도계수 가이드라인은 명확한 점화원의 강도 선정이 가능하고 분류의 확장을 통하여 더욱 세분 화된 계수 값의 선정이 가능함에 따라 실제 사례와 비교적 유사한 폭압 산정이 가능하다.
2020년 9월 23일 새벽 1시 39분경 전국 여러 곳에서 목격된 서천 화구는 대기권에 진입 후 두 차례 폭발했음 이 전천 카메라 영상에 확인되었으며, 충격파는 한반도 서남부 지역 지진 및 인프라사운드 관측소에 기록되었다. 17개 관측소에서 측정된 화구 지진파 및 음파의 도달 시간 정보와 베이지안에 기초한 격자탐색법으로 화구 발생 위치를 추정하였다. 위치결정에는 대기권 바람 분포에 따른 음파 속도 변화를 반영하여 계산 결과의 신뢰도를 높였다. 화구 발생 위치는 36.050°N, 126.855°E, 고도 35 km로 전천 카메라 영상에서 관측된 두번째 화구 위치와 유사하였다. 서해 상공에서 한반도 내륙으로 입사하며 발생한 두 차례의 폭발이 근거리 인프라사운드 관측소에서 확인되었다. 또한 서천 화구 폭발 충격음은 장거리를 전파하여 최대 ~266 km에 위치하는 관측소에서도 기록되었으며 파형 모델링이 관측 결과를 뒷받침하였다. 인프라사운드 5개 관측소에서 측정된 두번째 화구 폭발 신호의 평균 주기는 ~0.4 s이며, 주기-폭발 에너 지 관계식을 적용했을 때 서천 화구의 폭발 에너지는 약 0.3 ton TNT 폭발에 상응한다.
플랜트 증기운 폭발은 TNT 폭발물에 의한 폭발과는 다른 특징이 있으며 압력파 양상과 비슷하다. 대표적인 유형의 폭압 산정법은 TNT 등가량 환산법과 멀티에너지법이 있다. TNT 등가량 환산법은 폭굉과 같은 충격파를 전제로 하며, 멀티에너지법은 폭연과 같은 압력파를 전제로 한다. 본 연구는 세 가지 플랜트 폭발 사례를 적용하여 플랜트 증기운 폭발의 적절한 폭압을 도출하기 위한 연구를 수행하였다. 폭발 사례에 대하여 피해를 입은 부재를 선정한 후, 단자유도 해석과 비선형 동적 해석을 수행하여 변형과 손상 정도를 비교 분석하였다. 구조물의 피해 정도는 TNT 등가량 환산법보다는 멀티에너지법에 의한 폭압을 사용한 경우가 실제 상황에 더욱 근접한 것으로 나타났다. 또한, 멀티에너지법의 폭발강도계수를 7 또는 8로 가정할 경우 증기운 폭발의 폭압 모델을 비교적 정확하게 산정할 수 있을 것으로 판단된다.