검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 22

        1.
        2023.05 구독 인증기관·개인회원 무료
        Concrete decontamination tools capable of removing the nuclear contaminated surface are necessary to minimize the amount of concrete waste generated in the process of decontamination and dismantling of nuclear power plants. Laser scabbling is a decontamination technique that removes the contaminated surface layers concrete surface by inducing internal explosion. The application principle of laser scabbling technology uses the porous nature of concrete including moisture. When high thermal energy is applied to the concrete surface, an explosion at pores is induced along with an increase in water vapor pressure. High-powered laser beam can be an effective induction source of local explosive spalling on concrete surface. In this study, the scabbling test using a 5 kW highpowered fiber laser was conducted on the concrete blocks to establish the optimal conditions for surface decontamination. It was also measured the volume peeled off the concrete surface under the conditions of two different laser head speeds. Furthermore, we tested the removal efficiency of radioactive concrete particles generated during high-power fiber laser scabbling process. A 5 kW laser beam was applied to the concrete surface at two different laser head speeds - 120 mm/min and 600 mm/min. The laser beam repeatedly moved 200 mm horizontally and 40 mm vertically within the concrete block. The amount of surface concrete removed from concrete block was calculated from the measurement of the volume and mean depth using a 3D scanner device (laser-probed Global Advantage 9.12.8(HEXAGON)) for the two different the laser head speeds. By increasing the laser head speed, less explosive spalling occurred due to shorter contact time of the laser beam with the concrete. The laser head speed of 600 mm/min reduced about 89% of the waste generated by shallow depth of scabbling as compared to the waste generated at the laser head speed of 120 mm/min. The fiber laser scabbling system was developed for surface decontamination of radioactive concrete in nuclear power plants. Tests were performed to find the optimum parameters to reduce the generation of particulate waste from the contaminated concrete surface by controlling the laser head speeds. It was confirmed that the wastes from surface decontamination was reduced up to 89% by increasing laser head speed from 120 mm/min to 600 mm/min. It was also observed that the cylindrical tube effectively vacuumed the debris generated by the explosive spalling into the collector. Removal efficiencies of concrete particles were measured greater than 99.9% with ring blower power of 650 air watt of the filter system.
        2.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Welding is a representative processing technology applied in many industrial sites due to its quality and convenience. In particular, fiber laser welding can be welded at a faster speed compared to arc welding, and there is an advantage in welding distortion, which is the most significant disadvantage of welding. In this study, the weldable thickness was predicted, and the optimal welding angle was estimated using simulations during the welding of the T-shape structure. The multi-layer heat source model proposed in the previous author's study was used, and the study was conducted using the proposed welding heat source under specific conditions of 4kw and 1.0m/min. As a result, it was predicted that high-quality welding would be possible when the thickness was 3mm or 4mm, and it was also confirmed that welding should be performed at an angle of 82.5° or more when welding a 3mm thick structure. As a follow-up study, we plan to build a welding heat source model under various conditions and conduct a study to derive welding conditions at various thicknesses.
        4,000원
        3.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Environmental regulations of the International Maritime Organization (IMO) are getting stricter, and the demand for replacing the fuel of ships with eco-friendly fuels instead of heavy oil in the shipbuilding and marine industries is increasing. Among eco-friendly fuels, LNG (liquefied natural gas) is currently the most popular fuel. This is because it is an alternative that can avoid the IMO's environmental regulations by replacing fuel. In PART 1, as a basic study of laser welding of high manganese steel materials, a fiber laser bead-on-plate experiment was conducted using nitrogen protective gas, and the effect of each factor on the penetration shape was analyzed through cross-sectional observation. In PART II, argon and helium shielding gases, not the nitrogen shielding gas used in PART I, were tested under the same experimental conditions and the effect of the shielding gas on penetration during laser welding was conducted.
        4,000원
        4.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Environmental regulations of the IMO (International Maritime Organization) are becoming more and more conservative. In order to respond to IMO, the demand for replacing the fuel of ships with eco-friendly fuels instead of conventional heavy oil is increasing in the shipbuilding and offshore industries. Among eco-friendly fuels, LNG (Liquefied Natural Gas) is currently the most popular fuel. LNG is characteristically liquefied at -163 degrees, and at this time, its volume is reduced to 1/600, so it is transported in a cryogenic liquefied state for transport efficiency. A tank for storing this should have sufficient mechanical/thermal performance at cryogenic temperatures, and among them, high manganese steel is known as a material with high price competitiveness and satisfying these performance. However, high manganese steel has a limitation in that the mechanical performance of the filler metal is lower than that of the base metal called ‘under matching’. In this study, to overcome this limitation, a basic study was conducted to apply the fiber laser welding method without filler metal to high manganese steel. To obtain efficient welding conditions, in this study, bead-on-plate welding was performed by changing the fiber laser welding speed and output using helium shielding gas, and the effect of each factor on the penetration shape was analyzed through cross-sectional observation.
        4,000원
        6.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to environmental pollution, regulations on existing petroleum-based fuels are increasing day by day. LNG is in the spotlight as an eco-friendly fuel that does not emit NOx or SOx, but its boiling point is -163°C, so it needs to be handled with care. Materials that can be used at the above temperature are defined by IMO through the IGC Code. Among them, 9% nickel steel has great advantages in yield strength and tensile strength under cryogenic conditions, but it is difficult to use in arc welding such as FCAW for various reasons. This study is a study to apply fiber laser welding to solve this problem. As a previous study, this study conducted a study to find a welding heat source. After performing bead on plate welding, the optimal heat source was derived by analyzing the shape of the bead and adjusting the parameters of the heat source model. In this case, by applying the multi-island genetic algorithm, which is a global optimization algorithm, not the intuition of the researcher, accurate results could be derived in a wide range.
        4,000원
        7.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to stricter environmental regulations of the International Maritime Organization(IMO), the number of ships fueled by Liquefied Natural Gas(LNG) is rapidly increasing. The International Code of the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk(IGC Code) limits the material of tanks that can store cryogenic substances such as LNG. Among the materials listed in the IGC Code, ASTM A553M-17 has been recently adopted as a material for LNG fuel tank projects because of its excellent mechanical properties at cryogenic temperatures. In shipyards, this material is being used to build tanks through Flux Cored Arc Welding (FCAW). However, there is a problem that magnetization occurs during welding and there is a big difference in welding quality depending on the welding position. In order to overcome this problem, this study intends to conduct basic research to apply laser welding to ASTM A553M-17 material. In this study, a study on penetration (HAZ depth, Penetration) and welding defects during fiber laser welding according to three types of shielding gases(nitrogen, argon, and helium) was conducted. To this end, a Bead on plate(BOP) experiment was performed under four fiber laser conditions(Power, Speed) for each shielding gas and welding defects caused by the use of the shielding gas were compared through cross-sectional observation, and the penetration depth was analyzed.
        4,000원
        8.
        2021.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A laser scabbling experiment was performed using a high-power fiber laser to investigate the removal rate of the concrete block and the scabbled depth. Concrete specimens with a 28-day compressive strength of 30 MPa were used in this study. Initially, we conducted the scabbling experiment under a stationary laser beam condition to determine the optimum scan speed. The laser interaction time with the concrete surface varied between 3 s and 40 s. The degree of spalling and vitrification on the surface was primarily dependent on the laser interaction time and beam power. Furthermore, thermal images were captured to investigate the spatial and temporal distribution of temperature during the scabbling process. Based on the experimental results, the scan speed at which the optical head moved over the concrete was set to be 300 mm∙min−1 or 600 mm∙min−1 for the 4.8-kW or 6.8-kW laser beam, respectively. The spalling rates and average depth on the concrete blocks were measured to be 87 cm3∙min−1 or 227 cm3∙min−1 and 6.9 mm or 9.8 mm with the 4.8-kW or 6.8-kW laser beams, respectively.
        4,000원
        9.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to stricter environmental regulations of the International Maritime Organization (IMO), the number of ships fueled by Liquefied Natural Gas (LNG) is rapidly increasing. The International Code of the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC Code) limits the material of tanks that can store cryogenic substances such as LNG. Among the materials listed in the IGC Code, ASTM A553M-17 has been recently adopted as a material for LNG fuel tank projects because of its excellent mechanical properties at cryogenic temperatures. In shipyards, this material is being used to build tanks through Flux Cored Arc Welding (FCAW). However, there is a problem that magnetization occurs during welding and there is a big difference in welding quality depending on the welding position. In order to overcome this problem, this study intends to conduct basic research to apply laser welding to ASTM A553M-17 material. As a result of analyzing the bead shape according to laser BOP speed and Energy density performed in this study, it was confirmed that the penetration and energy density are proportional but the penetration and BOP speed are inverse proportional to some extent. In addition, a range of suitable welding speed and energy density were proposed for the 6.1mm thickness material performed in this study.
        4,000원
        10.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to stricter environmental regulations of the International Maritime Organization (IMO), the number of ships fueled by Liquefied Natural Gas (LNG) is rapidly increasing. The International Code of the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC Code) limits the material of tanks that can store cryogenic substances such as LNG. Among the materials listed in the IGC Code, ASTM A553M-17 has been recently adopted as a material for LNG fuel tank projects because of its excellent mechanical properties at cryogenic temperatures. In shipyards, this material is being used to build tanks through Flux Cored Arc Welding (FCAW). However, there is a problem that magnetization occurs during welding and there is a big difference in welding quality depending on the welding position. In order to overcome this problem, this study intends to conduct basic research to apply laser welding to ASTM A553M-17 material. In Part I, the bead shape according to the welding output was analyzed and in PART II, ​​the penetration phenomenon according to the welding speed was analyzed after Bead on Plate (BOP) test. As a result of analyzing the bead shape according to laser power performed in this study, it was confirmed that the laser power and penetration depth are proportional to some extent. In addition, a range of suitable welding power was proposed for the 6.1mm thickness material performed in this study.
        4,000원
        11.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The multi-layered heat source model is a model that can cover most of existing studies and can be defined with a simple formula. Based on the methodology performed in previous studies, the welding heat source was found through experiments and FEM under the welding power conditions of three cases and the parameters of the welding heat source were analyzed according to the welding power. In this study, parameters of fiber laser welding heat source according to welding power were searched through optimization algorithm and finite element analysis, and the correlation was analyzed. It was confirmed that the concentration of the welding heat source in the 1st layer was high regardless of the welding power, and it was confirmed that the concentration of the welding heat source in the 5th layer (last layer) increased as the welding power increased. This reflects the shape of the weld bead that appears during actual fiber laser welding, and it was confirmed that this study represents the actual phenomenon.
        4,000원
        12.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a welding heat source model was presented and verified during fiber laser welding. The multi-layered heat source model is a model that can cover most of existing studies and can be defined with a simple formula. It consists of a total of 12 parameters, and an optimization algorithm was used to find them. As optimization algorithms, adaptive simulated annealing, multi island genetic algorithm, and Hooke-Jeeves technique were applied for comparative analysis. The parameters were found by comparing the temperature distribution when the STS304L was bead on plate welding and the temperature distribution derived through finite element analysis, and all three models were able to derive a model with similar trends. However, there was a deviation between parameters, which was attributed to the many variables. It is expected that a more clear welding heat source model can be derived in subsequent studies by giving a guide to the relational expression and range between variables and increasing the temperature measurement point, which is the target value.
        4,000원
        13.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Welding is the most widely used technology for manufacturing in the automobile, and shipbuilding industries. Fiber laser welding is rapidly introduced into the field to minimize welding distortion and fast welding speed. Although it is advantageous to use finite element analysis to predict welding distortion and find optimized welding conditions, there are various heat source model for fiber laser welding. In this study, a welding heat source was proposed using a multi-layered heat source model that encompasses most of the existing various welding heat source models: conical shape, curved model, exponential model, conical-cylindrical model, and conical-conical model. A case study was performed through finite element analysis using the radius of each layer and the ratio of heat energy of the layer as variables, and the variables were found by comparing them with the actual experimental results. For case study, by applying Adaptive simulated annealing, one of the global optimization algorithms, we were able to find the heat source model more efficiently.
        4,000원
        16.
        2017.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the laser welding experiments were performed with the 1 mm thickness of Al 6061-T6 using by 5 kW fiber laser welding system. The optimum laser welding condition of the lap joint has been investigated by analyzing the penetration depth and the porosity fraction through observation of the cross-sections. Based on the test results, the sound joint was obtained from the welding condition with the power of 2 kW and the focal position of -0.8 mm at the continuous laser welding speed of 2 mpm. Also, the tensile strength of the sound joint after heat treatment(170℃, 12hr) was increased almost 87% that of the base material. Especially, the fatigue test result of the sound joint showed that the fatigue cycle was 3×10 4 at the highest test load of 100 MPa.
        4,000원
        17.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fiber laser welding has been developed for precise welding of small and complicate components assembled on the nuclear fuel irradiation test rig. In this research, laser welding characteristics of STS316L, the main material of nuclear fuel test rig, have been studied. Several welding experiments were carried out in lap welding of the tube and the end cap made of STS316L. Process variables such as non-focal length, shield gas, laser frequency and power are optimized and compared with the results of Zircaloy-4.
        4,000원
        18.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nowadays, the automotive industry has target to improve the fuel consumption due to restricted exhaust gas regulation. For this reason, the applicability of lightweight material, Al alloys, Mg alloys are also being expanded. In this concept, high strength steel, DP780 and light alloy, AL5052 are joined in the right place of the car body. However, it is difficult to join to steel and aluminum by conventional fusion welding. Generally, in respect to dissimilar metal joining by fusion welding, intermetallic compound layer formed at joint interface; hot cracking in generated. To evaluate the welding quality, tensile test and metallographic examination was carried. Especially, correlation between Heat per unit length and formation of intermetallic compound layer was minutely analyzed. Finally, optimal welding condition was selected for improvement of strength at weldment and practical use.
        4,000원
        19.
        2012.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        During the laser-assited endoscopic surgery, the laser light is delivered to the deep tissue or the internal organ using a light transmitting delivery system. It is necessary to modify the direction of the light emission at the distal end of fiber tip for some application of in laser-assisted surgery. The homemade diffusing fiber and the forward firing fiber are used for the endoscopic delivery system of the continuous IR laser into the water rich tissue. The beam emission and the laser-assisted ablation and coagulation pattern were compared for two distinctive fiber systems. The diffusing fiber produced cavity and coagulation zone more or less a circular shape, while the forward fiber produced an elongated cavity and coagulation region. The diffusing fiber produced wider and shorter coagulation and cavity zone compared to that of forward-firing fiber
        4,000원
        1 2