검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 17

        3.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 폴리머 시멘트 모르타르의 인장성능을 개선하기 위하여 PVA 섬유를 적용하고자 하였다. PVA 섬유 혼입량에 따른 재료특성을 검토하여, 섬유보강 폴리머 시멘트 모르타르의 제조 가이드라인을 제공하고자 하였다. 폴리머 시멘트 모르타르의 제조를 위하여 친수성의 합성수지(SR)를 사용하였다. 실험에 사용된 변수로 (W+SR)/C비를 고정하여, 사용물에 대한 합성수지의 치환율을 일정하게 증가시켜 사용하였다. PVA 섬유의 혼입량은 각각의 실험체에 0%,1%,2%를 혼입하여 실험을 수행하였다. 재료특성 실험으로는 압축강도시험, 쪼갬 인장강도시험, 휨 강도 시험을 수행하였다. 폴리머 시멘트 모르타르에 PVA 섬유를 혼입하면 쪼갬 인장강도 및 휨 강도가 증가하는 것을 확인 하였다. 따라서, 본 연구결과는 합성수지 혼입 폴리머 시멘트 모르타르의 인장성능 개선을 위한 PVA섬유 혼입시 제조 가이드라인으로 활용이 가능할 것으로 판단된다.
        4,000원
        5.
        2018.04 구독 인증기관 무료, 개인회원 유료
        The contemporary high-tech structures have become enlarged and their functions more diversified. Steel concrete structure and composite material structures are not exceptions. Therefore, there have been on-going studies on fiber reinforcement materials to improve the characteristics of brittleness, bending and tension stress and others, the short-comings of existing concrete. In this study, the purpose is to develop the estimated model with dynamic characteristics following the steel fiber mixture rate and formation ration by using the nerve network in mixed steel fiber reinforced concrete (SFRC). This study took a look at the tendency of studies by collecting and analyzing the data of the advanced studies on SFRC, and facilitated it on the learning data required in the model development. In addition, by applying the diverse nerve network model and various algorithms to develop the optimal nerve network model appropriate to the dynamic characteristics. The accuracy of the developed nerve network model was compared with the experiment data value of other researchers not utilized as the learning data, the experiment data value undertaken in this study, and comparison made with the formulas proposed by the researchers. And, by analyzing the influence of learning data of nerve network model on the estimation result, the sensitivity of the forecasting system on the learning data of the nerve network is analyzed.
        3,000원
        6.
        2004.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The main goal of this work is to study the effect of glass fiber volume fraction on the result of tensile test with respect to glass fiber/polypropylene(GF/PP) composites. The tensile test and failure mechanisms of GF/PP composites were investigated in the fiber volume fraction range from 10% to 30%. The tensile strength and the fracture strength increased with the increasing of the fiber volume fraction in the tested range. Fiber pull-out and debonding of this composites increased with the fiber volume fraction in thc tested range. The major failure mechanisms were classified into the debonding, the fiber pull out, the delamination and the matrix deformation.
        4,000원
        7.
        2018.10 서비스 종료(열람 제한)
        This paper describes the effect of steel fiber volume fraction and aspect ratio on mechanical properties of SFRC with compressive strength of 40 MPa. In this study, The fiber volume fractions consist of 0.25%, 0.50% and 0.75% and aspect ratios are 64 and 80 used. The prisms with 150×150×550 mm were made and tested in accordance with EN-14651. Test results show that the superior flexural performance was observed in SFRC with higher fiber volume fraction and aspect ratio.
        8.
        2017.04 서비스 종료(열람 제한)
        According to the KCI 2012, it is presented that steel fiber can replace minimum shear reinforcement when beams are designed. However, there is no standard for columns, and there is a lack of research on SFRC columns. Therefore, it is evaluated how much the capacity of columns increases according to the volume fraction of steel fiber through the cyclic lateral loading tests. Also, it is evaluated whether steel fiber can replace transverse reinforcements in concrete columns.
        9.
        2016.10 서비스 종료(열람 제한)
        Based on the study of researchers carried about SFRC, it was found that SFRC was effective to achieve flexural toughness according to higher volume fraction. On the other hand, higher volume fraction did not effect at compressive strength and toughness.
        10.
        2016.04 서비스 종료(열람 제한)
        Concrete behaves as a brittle material with low tensile strain capacity. By adding fibers, the cracking in concrete matrix is controlled, and the mechanical properties are improved. In this study, the mechanical properties of fiber reinforced concrete are compared with fiber type and fiber volume fraction. From the results, the fiber mixed in concrete must be at least 0.5% regardless fiber type, in order to ensure the compressive and flexural strength equivalent or higher than OPC.
        11.
        2016.04 서비스 종료(열람 제한)
        Concrete behaves as a brittle material with low tensile strain capacity. By adding fibers, the cracking in concrete matrix is controlled, and the durability is improved. In this study, the microstructure and Chloride diffusion resistance of fiber reinforced concrete are compared with fiber type and fiber volume fraction. From the results, the fiber mixed in concrete must be at least 0.5% regardless fiber type, in order to ensure the chloride diffusion coefficient higher than OPC at 91days. However, the micro structure distribution is affected with fiber volume fraction and fiber type at range 10~100nm.
        12.
        2015.10 서비스 종료(열람 제한)
        Concrete shrinkage is happened due to the cement hydration and water evaporation from early ages, and it induces crack of concrete. In this study, the crack resistance of fiber reinforced concrete was compared with fiber type and fiber volume fraction. From the results, cracking is delayed when the volume fraction is increased. And, crack resistance is improved regardless of fiber type.
        13.
        2015.07 KCI 등재 서비스 종료(열람 제한)
        본 연구는 SIFCON 형태의 고성능 강섬유보강 시멘트 복합체의 섬유혼입률에 따른 휨실험을 수행하였고, 실험결과를 바탕으로 휨성능을 평가하였다. 슬러리를 충전하는 형태로 일반 섬유보강시멘트와 달리 높은 섬유혼입률을 확보할 수 있는 장점을 가지고 있다. 주요 실험변수는 섬유혼입률 8.0%, 7.5%, 7.0%, 6.5% 및 6.0% 이며, 각 변수에 대한 휨강도 및 휨인성 특성을 분석하였다. 그 결과, 높은 섬유혼입률로 인하여 초기균열 발생 이후에도 계속적으로 하중이 증가하였으며, 최대강도 이후 충분한 잔류강도를 확보하였다. 또한 최대 50MPa 수준의 높은 휨강도를 발현하였으며, 섬유혼입률에 따른 휨강도 및 휨인성은 비례하여 증가하는 경향으로 나타났다.
        14.
        2014.04 서비스 종료(열람 제한)
        The purpose of this study was to effects on flexural performance of SFRC prism with different fiber volume fraction. The test variables such as aggregate maximum size(8, 13, 20mm) and steel fiber volume faction(0, 1, 2%). Specimen size is 100×100×400mm and tested in for points loading. Test results indicated that increase the fiber volume fraction increase with flexural strength and smaller aggregate size more than higher performance with concrete.
        15.
        2013.10 서비스 종료(열람 제한)
        The purpose of this study is to estimate basic mechanical properties of steel fiber reinforced Alkali-Activated Slag(AAS) concrete. Principle variable is the fiber volume fraction: 0, 0.5, 1%. Two type cement composites were used: Steel Fiber Reinforced Concrete(SFRC) and AAS. Mechanical properties of AAS concrete and SFRC, including compressive strength, elastic modulus, flexural strength, splitting tension.
        16.
        2013.04 서비스 종료(열람 제한)
        This paper present results from effect of fiber volume fraction on direct shear property of steel fiber reinforced concrete(SFRC). Steel fiber with crimped end was used this work. Principal variable is fiber volume fraction; 0, 0.5, 1, 1.5, 2%, and aggregate size; 8, 13, 20mm. Specimen cross-sectional is 100 x 100 x 400mm. In order to induce the shear failure 2mm notch was sawed all around the specimen. Test result, there are little different between the aggregate size, and the improvements in shear strength of SFRC were more significant for 1% steel fiber volume fraction.
        17.
        2011.07 KCI 등재 서비스 종료(열람 제한)
        폴리프로필렌섬유보강 시멘트 복합재료와 구조용 합성섬유의 부착특성을 평가하였다. 폴리프로필렌섬유는 0.10%, 0.15% 및 0.20%의 체적비로 적용하여 dog-bone 시험을 실시하였다. 구조용 합성섬유와 폴리프로필렌섬유보강 시멘트 복합재료 사이의 부착강도는 폴리프로필렌섬유의 혼입률이 증가할수록 증가하였으나 0.20% 이상이 되면 감소하였다. 또한 폴리프로필렌섬유의 첨가는 계면인성과 마찰저항을 증가시킨다. 인발시험 후 구조용 합성섬유 표면의 미소구조 분석은 폴리프로필렌섬유의 혼입률이 증가할수록 긁힘 현상이 증가하였다.