This study was in line with consecutive growth of urban agriculture implemented to provide a functional vegetable garden model for urban vegetable gardeners. It targeted the users who actually raise functional vegetable gardens, analyzed the flaws for correction in many ways including a type of products, quantity, ratio, and the like and existing problems. It is found out from Utilization that first is the highest ranking with no experience of growing vegetable garden education while growth education helping vegetable garden activity takes the half. Saying yes to the participation in the growth education following the process ranked the highest. In addition when planting, in regards to earning information about plantation timing and measure, they responded that they directly determine those by themselves. Second, the type of plant that they are mainly supposed to produce in family gardening was vegetables. Many say that it is easy to produce, easy to get information. In the fall, Kimchi and vegetables ranked the highest, the reason for functional vegetable gardeners to participate in planting family garden is an interest in a variety of producing crops. Third, the current amount included is proper for flower・herb plants in functional vegetable garden model while the ratio of crops vegetables60.5 : medical21.2 : flower・herbs18.3 in vegetable garden model is responded moderate.
Recently, increasing interest in environmental pollution problems that can be discharged emerging from inland water cultures, problems in the processing of effluents are recognized as environmental pollution sources are difficult accordingly. As a result, in this study, the effluent water as such a source of environmental pollution carried examine the availability of as organic fertilizer to be used for cultivation of crops. The study tested using 3 types of crops, As a method of using as a fertilizer in a particular solution that was created and practices to liquid fertilizer solution used to the concentration of the effluent. After you grow crops in a certain amount of irrigation once every week for each processing it was analyzed for the differences of content of the functional substance and growth of crops. As a result a certain amount of the effluent water in the stock solution, the content of functional materials and growth of crops were found to be superior to other processes in irrigation which was treated weekly. In conclusion, according to these results the effluent water from BFT inland water culture has been found to give a positive effects on the contents of the functional materials and growth of crops. Studies on a method for utilizing the effluent water as a fertilizer is considered further required.
This study was conducted to investigate the growth characteristics and functional materials of baby vegetables as affected by different LEDs and luminous intensity at Anseongsi, Gyeonggi Province, in 2014. Test crops were beet, chicory, spinach, red leaf lettuce, crown daisy and red mustard purchased from the seed company of Dongbu Hannong and Jinheung. Growth characteristics were measured and the content of functional materials was analyzed 40 days after seeding at plug plate. Treatment of Red+Blue (4:1) at 150 µmol m-2 s-1 luminous intensity showed the highest number of leaves in five baby vegetables of beet, chicory, red leaf lettuce, crown daisy and red mustard. The highest shoot length of chicory, spinach, red leaf lettuce, crown daisy and red mustard was obtained from the treatment of Red+Blue (4:1) at 150 µmol m-2 s-1 luminous intensity. Fresh weight and dry weight of all six baby vegetables were the highest in treatment of Red+Blue (4:1) at 150 µmol m-2 s-1 luminous intensity. Content of chlorophyll a and chlorophyll b of spinach, red leaf lettuce and red mustard showed the highest in Fluorescent lamp at 150 µmol m-2 s-1 luminous intensity whereas other crops did not show definite trend under different LEDs lights and luminous intensity. The highest total content of anthocyanins and polyphenol were obtained from the treatment of Red+Blue (4:1) at 150 µmol m-2 s-1 luminous intensity in all six baby vegetables. Free radical scavenging activity was highest in all six vegetable crops at 150 µmol m-2 s-1 luminous intensity, but it was not different significantly between LEDs.As a result, the growth and the content of functional material of baby vegetables are generally to be increased in Red+Blue (4:1) at 150 µmol m-2 s-1 luminous intensity. Mixed light of Red+Blue is thought to give good effect on the growth and the content of functional material in baby vegetable crops. Because there are many differences in regard of LED lights, crop varieties, cultivation and experi-mental methods in their impact on the growth and functional materials of baby vegetables among researchers, it is considered that a more precise studies are needed for the crop responses to LED light and luminous intensity.