This study evaluated the sensory characteristics of sauerkraut prepared by adding 0.5, 1.0, 1.5, 2.0, and 2.5% (w/w) sea salt to cabbage. The quantitative descriptive analysis (QDA) and acceptance test of sauerkraut were determined for each salt concentration, and the principal component analysis (PCA) and partial least square regression (PLSR) analysis were performed to confirm the correlation between each factor. Results of the QDA determined 14 descriptive terms; furthermore, brightness and yellowness of appearance and the sour, salty, and bitter flavors differed significantly according to the salt concentration. Results from the PCA explained 22.56% PC1 and 65.34% PC2 of the total variation obtained. Sauerkraut prepared using 0.5, 1.0, and 1.5% sea salt had high brightness, moistness, sour odor, green odor, sour flavor, carbonation, hardness, chewiness, and crispness, whereas sauerkraut prepared with 2.0 and 2.5% sea salt had high yellowness, glossiness, salty flavor, sweet flavor, and bitter flavor. Hierarchical cluster analysis classified the products into two clusters: sauerkraut of 0.5, 1.0, and 1.5%, and sauerkraut of 2.0 and 2.5%. Results of PLSR determined that sauerkraut of 1.0 and 1.5% were the closest to texture, taste, and overall acceptance. We, therefore, conclude that sauerkrauts prepared using 1.0 and 1.5% sea salt have excellent characteristics in appearance, taste, and texture.
This study investigated the minimum salt concentration required for achieving the optimal quality characteristics of sauerkrauts made by adding 0.5, 1.0, 1.5, 2.0, and 2.5% (w/w) of sea salt to cabbage according to the fermentation period. For evaluating the quality characteristics, we measured the microorganisms (lactic acid bacteria, yeast, and coliform group), pH, total acidity, salinity, chromaticity, and hardness every 24 hours. The lactic acid bacteria were identified and analyzed, and acceptance test was carried out on the 4th day of fermentation. The results showed that the salinity of 0.5, 1.0, 1.5, and 2.0% sauerkrauts on the 4th day of fermentation was lower than the average salinity of Baechu-Kimchi. The 0.5, 1.0, 1.5, and 2.0% sauerkrauts had significantly higher lactic acid bacteria than the 2.5% sample, and the coliform group was not detected after the 5th day of fermentation. Among the microbes identified, Weissella cibaria JCM 12495 was found only in domestic sauerkraut, in addition to Lactococcus lactis NCDO 604, Leuconostoc citreum JCM 9698, and Lactobacillus sakei DSM 20017. The results of the acceptance test show that 1.0 and 1.5% sea salt sauerkraut had significantly higher overall acceptance compared to the other samples. In conclusion, sauerkraut with a salt concentration of 1.0 and 1.5% (w/w) had abundant lactic acid bacteria and excellent sensory properties, suggesting that the production of low-salted sauerkraut can be adopted to reduce consumer salt intake in the future.
오징어 젓갈에 오징어 먹즙을 2% 및 4% 농도로 첨가하고 10℃에서 8주일간, 20℃에서 32일간 숙성시키면서 아미노태 질소와 근육단백질 변화를 분석한 결과는 다음과 같다. 오징어 먹즙이 첨가되지 않은 오징어 젓갈의 아미노태 질소는 식염 농도가 낮고 숙성온도가 높을수록 숙성 후반까지 계속 유의성 높게 증가하여 숙성이 촉진되었으며 오징어 근육의 단백질 변화는 myosin heavy chain이 숙성 초반에 현저히 분해되지만 actin의 변화는 거의 없어서 protease에 강하였다. 오징어 먹즙을 첨가한 오징어 젓갈의 아미노태 질소 함량은 숙성후반까지 계속 증가하였으나 증가폭은 무 첨가군에 비하여 적었으며 오징어 근육 단백질 중 myosin heavy chain은 숙성 중반에 현저히 분해되었으며 식염농도가 높고, 온도가 낮은 먹즙 첨가군은 분해 속도가 느렸다.
분쇄한 생마늘 10%와 식염을 6, 8, 10 및 12%로 달리하여 저염 마늘 된장을 제조하고, 상온에서 6주간 숙성시키면서 일주일 간격으로 시료를 취하여 숙성기간에 따른 품질 특성의 변화를 분석하였다. 숙성 시간이 경과할수록 명도는 감소하였으나, 적색도와 황색도는 유의적인 변화의 경향이 없었다. 염도는 된장 제조 직후에 비해 숙성 6주차에 1% 정도씩 증가하였으며, pH는 저장기간이 경과할수록 점차 감소하였으며, 산도는 이와 상반되게 증가되는 경향이었다. 환원당은 숙성기간의 경과와 더불어 유의적으로 증가하여 된장 제조 직후에 1.34~1.88 g/100 g이던 것이 숙성 6주차에는 7.25~9.13 g/100 g으로 변화하였는데, 식염의 첨가 농도가 낮을수록 환원당의 함량이 더 높았다. 아미노태 질소는 100~130 mg%에서 숙성 6주차에는 210~290 mg%로 약 2배 증가하였는데, 식염의 첨가 농도가 높을수록 아미노태질소의 함량은 더 낮았다. 된장의 발효 균주인 Bacillus 균주의 생육은 숙성 14일까지 증가되다가 그 이후부터는 감소되는 경향이었는데, 식염 10%와 12% 첨가군에서는 숙성 14일까지 Bacillus 균주의 생육이 양호하였다. 반면 효모는 된장의 숙성 초기에 급격히 감소하였으며, 숙성 21일 이후에는 일정범위를 유지하여 큰 변화는 없었다. 이상의 결과를 종합하여 볼 때 마늘이 첨가된 저염 된장은 염농도가 낮을수록 환원당이나 아미노태 질소의 함량이 더 높았고, 이화학적인 품질에도 크게 영향을 받지 않아 6% 정도의 식염첨가로 저염화가 가능할 것으로 확인되었다.