A disposal system for spent nuclear fuel divides into two parts; (1) engineered barriers including spent nuclear fuel, canister, buffer and backfill, (2) natural barriers surrounding engineered barriers. Sorption and diffusion are main retardation mechanisms for the migration of released radionuclides. We analyzed the sorption properties of radionuclides for bentonite as a buffer material and collected/ evaluated the distribution coefficients for the purpose of safety assessment for the deep geological disposal of a spent nuclear fuel. Through this, we presented recommended distribution coefficients for radionuclides required for the safety assessment. This work included the radionuclides as follows; alkali and alkaline earth metals (Cs, Sr, Ba), lanthanides (Sm), actinides (Ac, Am, Cm, Np, Pa, Pu, Th U), transition elements (Nb, Ni, Pd, Tc, Zr), and others (C, Cl, I, Rn, Se, Sn). The sorption of radionuclides affected various geochemical conditions such as pH/carbonates, redox potential, ionic strength, radionuclide concentration, kinds and amounts of minerals, and microbes. Among the evaluated radionuclides, Cs, Ni, Pd, and Ra is sensitive to the ionic strength, while Np, Pu, U, Se, and, Tc is sensitive to the redox condition. For the evaluation of distribution coefficients, the data from Sweden (SKB), Finland (Posiva), Switzerland (Nagra), and Japan (JAEA) were collected, analyzed, and the recommended distribution coefficients were suggested.
The nuclide management technology for separating high-heat generating/high-mobility/long-lived nuclides from high-level wastes based on the chemical reactions is under development. In order to secure the reliability of nuclear non-proliferation and to implement the effective safeguards, it is necessary to consider the safeguards from the conceptual design phase of the novel technologies. However, there was no experience and research on safeguards for the chemical reaction based nuclide management technology. In order to development the available monitoring techniques for the safeguards of nuclide management technology, the possible diversion scenarios were developed and the material flows of major nuclear materials were analyzed according to the various diversion strategies for each unit process in this study. The diversion strategies in this study is limited to the diversion of nuclear materials according to the change of operational parameters (temperature, chemical reagents, pressures, etc). The nuclear material distribution behaviors under the abnormal conditions were analyzed and compared with normal conditions using the HSC Chemistry. The results will be used to determine the proper signals and feasible techniques to monitor the abnormal operations.
In the 1930s, The Architectural Association of Joseon run the ‘Architectural Material Display’ on the 2nd floor of the Japan Life Insurance Building in Hwanggumjeong(currently Euljiro street). The purpose of this place was to introduce new architectural materials to builders. And they issued a 『建築資料型錄(Architectural Material Catalog)』and distributed it free of charge so that people in districts at long distances can make use of it. This catalog contains descriptions, photographs and drawings of various architectural materials that were common at the time, and the overseas branch address of the store is stated. The purpose of this research is to investigate the type and characteristics of architectural materials distributed in Northeast Asia around the 1930s, the region of sale, affiliated companies by closely analyzing the 『建築資料型錄』.
한국의 도시산림을 대표하는 남산에 대표군락인 소나무 군락의 물질생산과 탄소분포의 특성을 밝히고자 2009년부 터 2017년까지 현존량, 순생산량, 식물체 유기탄소 분포량, 낙엽생산량, 낙엽의 유기탄소량, 임상낙엽량, 임상낙엽의 유기탄소량 그리고 토양의 깊이별 유기탄소 축적량을 조사 하였다. 교목층의 현존량은 측정한 흉고직경을 상대생장식 에 대입하여 매년 산출하였다. 2009년부터 2017년까지 교 목층의 현존량은 각각 153.96, 160.05, 160.55, 166.46, 170.21, 167.68, 174.25, 180.71 그리고 184.65 ton/ha 이었 다. 순생산량은 2009년부터 2016년까지 각각 7.01, 4.17, 2.88, 5.52, 4.68, 3.53, 2.62 그리고 6.74 ton/ha이었다. 식물 체의 유기탄소 분포량은 2009년부터 2017년까지 각각 69.28 72.02, 72.25, 74.91, 76.6, 75.45, 78.41, 81.32 그리 고 83.1ton/ha이었다. 낙엽생산량은 2009넌부터 2017년까 지 각각 7.23, 5.95, 2.58, 5.84, 6.26, 1.93, 1.43, 5.17그리고 4.89 ton/ha이었다. 낙엽생산을 통해 임상으로 유입되는 낙 엽의 유기탄소량은 2009년부터 2017년까지 각각 0.26, 0.21, 0.09, 0.21 0.23, 0.07, 0.05, 0.19 그리고 0.18 ton C/ha 이었다. 임상낙엽량은 2010년부터 2013년, 2016년 그리고 2017년에 각각 9.21, 8.84, 10.01, 9.34, 6.72 그리고 9.78 ton/ha이었다. 임상낙엽의 유기탄소량은 2010년부터 2013 년, 2016년 그리고 2017년에 각각 4.14, 3.98, 4.5, 4.2, 3.02 그리고 4.4 ton C/ha이었다. 토양의 깊이별 유기탄소 축적 량은 2009년부터 2012년, 2014년, 2016년 그리고 2017년 에 10cm, 20cm, 30cm, 40cm 그리고 50cm 깊이에서 각각 평균 37.60, 37.29, 36.42, 31.42 그리고 31.12 ton C/ha이었 다. 2014년 식물체의 탄소분포량이 가장 낮았는데, 이는 교목층 줄기의 현존량 증가율이 가장 적었기 때문이다. 또한, 2015년 순일차생산량이 다른 해보다 낮았는데, 이는 생육 기인 봄철(3~5월) 강수량이 평년보다 약 100mm 적었기 때문으로 해석된다.
The propagation of light radiation in a turbid medium is an important problem that confronts dosimetry of therapeutic laser delivery and the development of diagnostic spectroscopy. Scattered light is measured as a function of the position(distance r, depth z) between the axis of the incident beam and the detection spot. Turbid sample yields a very forward-directed scattering pattern at short range of position from source to detector, whereas the thicker samples greatly attenuated the on-axis intensity at long range of position. The portions of scattered light reflected from or transmitted throughphantom depend upon internal reflectance and absorption properties of the phantom. Monte Carlo simulation method for modelling light transport in tissue is applied. It uses the photon is moved a distance where it may be scattered, absorbed, propagated, internally reflected, or transmitted out of tissue. The photon is repeatedly moved until it either escape from or is absorbed by the phantom. In order to obtain an optimum therapeutic ratio in phantom material, optimum control the light energy fluence rate is essential. This study is to discuss the physical mechanisms determining the actual light dose in phantom. Permitting a qualitative understanding of the measurements. It may also aid in designing the best model for laser medicine and application of medical engineering.
탄소섬유보강폴리머(CFRP)는 경량이며, 성형성 및 작업성이 뛰어나 보수보강재료로서 널리 사용되고 있다. 하지만, 연성재료인 철근과는 달리 CFRP는 취성재료이므로, 철근에서 사용되는 전통적인 설계접근 방법을 적용하는 것은 부적합하다. 연성재료인 철근은 항복이후 요소사이의 응력재분배가 이뤄져 복합요소의 거동은 평균화된다. 따라서 복합요소의 응력 평균은 단위요소의 평균과 같고, 표준편차는 더 작아진다. 따라서 연성재료의 설계값은 증가시킬 수 있으나, 안전측, 실무적 접근에서 고정값을 사용한다. 반면 취성재료의 경우, 응력재분배를 기대하기 어려워 복합요소의 거동은 더 약한 요소에 의해 결정된다. 이에 복합요소의 응력의 평균값과 표준편차는 감소한다. 따라서 취성재료의 설계값은 요소수가 증가할수록 감소한다. 이 논문에서는 취성재료에서 정규분포를 가지는 단위요소가 요소 결합에 따라 와이블 분포를 가지게 됨을 증명하고, 이를 반영하여 하중이 작용하는 면적에 따른 물성치의 보정식을 제안하였다.
A three-dimensional ecosystem model is applied to the Suyoung Bay, located at the southeastern part of Korea, to study of the material distribution in the time scale of several tens days. The model has included of the DIN(Dissolved Inorganic Nitrogen), DIP(Dissolved Inorganic Phosphate), phytoplankton, zooplankton and detritus, and also was coupled with the physical processes. The spatial distribution of chlorophyll-a and primary productivity in the model is determined by the physical and chemical-biological parameters. The horizontal distributions of the DIN, DIP and chlorophyll-a are decreased from the coast to the off-shore, though the nutrients show some more complicated pattern than the chlorophyll-a. The nutrient contents in the off shore are low, and thus a relatively low productivity(chlorophyll-a) are presented. On the whole, the distribution of the results of model are smoother than the observed ones and some small scale variation in the observed data cannot be reproduced by the model due to the resolution limits of model. However, the basic pattern and the quantitavities has been reproduced by the model well.