The untreated effluent dropping into the environment from various textile industries is a major issue. To solve this problem, development of an efficient catalyst for the degradation of macro dye molecules has attracted extensive attention. This work is mainly focused on the synthesis of nickel–manganese sulfide decorated with rGO nanocomposite (Ni–Mn-S/rGO) as an effective visible photocatalyst for degradation of textile toxic macro molecule dye. A simple hydrothermal method was used to synthesize Ni–Mn-S wrapped with rGO. The prepared composites were characterized using various techniques such as X-ray diffraction (XRD), high-resolution scanning electron microscopy (HR-SEM), high-resolution transmission electron microscopy (HR-TEM), Fourier transform infra-red spectrometer (FTIR), and ultra violet–visible (UV–Vis) spectroscopy. The photocatalytic performance of nickel sulfide (NiS), manganese sulfide (MnS), nickel–manganese sulfide (Ni–Mn-S), and Ni–Mn-S/rGO nanocomposite was assessed by analyzing the removal of acid yellow (AY) and rose bengal (RB) dyes under natural sun light. Among these, the Ni–Mn-S/rGO nanocomposite showed the high photocatalytic degradation efficiency of AY and RB dyes (20 ppm concentration) with efficiency at 96.1 and 93.2%, respectively, within 150-min natural sunlight irradiation. The stability of photocatalyst was confirmed by cycle test; it showed stable degradation efficiency even after five cycles. This work confirms that it is an efficient approach for the dye degradation of textile dyes using sulfide-based Ni–Mn-S/rGO nanocomposite.
Solar cells based on p-conjugated donor-acceptor (D-A) organic molecular systems are a promising alternative to conventional electrical energy generation. D-A molecular systems, which have a triphenylamine (TPA) moiety linked with a benzothiadiazole (BTD) moiety, open the potential development of new small molecule donors for bulk heterojunction (BHJ) solar cells. Here, a series of donor-acceptor-π-acceptor (D-A-π-A) small molecule donors (SMD) derived from triphenylamine (TPA) donor and benzothiadiazole (BTD) acceptor building blocks, were designed for BHJ organic solar cells. The small molecule donors SMD1-4 were studied using density functional theory (DFT) and time dependent-DFT (TDDFT) methods, to understand the effect of cyano and fluorine group functionalization on their properties. The effect of structure alteration by cyano and fluorine group functionalization on the optoelectronic properties, the calculated highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) and the HOMO-LUMO gaps were theoretically explored. The Voc (open-circuit photovoltage) and fill factor (FF) for SMD1-4 were obtained with a PC71BM acceptor, which showed that these organic small molecules are potential small molecule donors for organic bulk heterojunction solar cells.
분자각인막(MIM)은 특정 분자의 결합자리를 갖고 있는 다공성 고분자 막이다. 비용매유도 상분리(NIPS)법을 사용하여 분자각인막의 지지체로 사용될 P(AN-co-MA) 비대칭막을 제조하고, 여기에 표면 각인법을 적용하여 광활성 이니퍼터 도입과 photo-grafting을 통해 라이소자임 분자각인막을 제조하였다. P(AN-co-MA) 비대칭막을 3-chloropropyltrimethoxysilane과 광활성 이니퍼터 dithiocarbamate로 개질하고, acrylamide 단량체, N,N'-methylenebisacrylamide 가교제, 라이소자임 주형분자 혼합액을 UV 조사 환경에서 혼성중합 시켜 MIM을 제조하였다. 제조된 MIM의 FT-IR과 FE-SEM 및 EDS 분석을 실시한 결과 P(AN-co-MA) 막은 비대칭 단면 구조이었고 표면에 이니퍼터 그룹이 잘 결합되어 있어 MIM이 성공적으로 제조되었다. 제조공정의 변수 조절을 통해 라이소자임의 흡착량이 비각인막(NIM)에 비해 13배 큰 값인 2.7 mg/g을 갖는 P(AN-co-MA) 기반 MIM이 제조되었으며, 막여과 실험을 통해 라이소자임에 대한 오발부민의 투과선택도를 측정한 결과 MIM은 라이소자임의 선택적 결합력이 우수하였다.
Metal-organic frameworks (MOFs) are of significant interest because of their high porosity, which facilitates their utilization in gas storage and catalysis. To enhance their current properties in these applications, it is necessary to elucidate the interactions between molecules in a confined environment that differ from those in bulk conditions. Herein, we study the confined molecular interaction by investigating the solvent-dependent photophysical properties of two different-sized molecules inside MOF-5. Ruthenium tris-bipyridine (Rubpy) and coumarin 153 (C153) are encapsulated in MOF-5. Rubpy with MOF-5 (Rubpy@MOF) is prepared by building MOF-5 around it, resulting in limited space for solvent molecules in the pores. The smaller C153 is encapsulated in the preformed MOF-5 (C153@MOF) by simply soaking the MOF in a concentrated C153 solution. C153@MOF permits more space for solvent molecules in the pore. Their characteristic absorption and emission spectra are examined to elucidate the confined molecular interactions. Rubpy@MOF and C153@MOF exhibit different spectral shifts compared to the guest molecules under bulk conditions. This discrepancy is attributed to the different micro-environments inside the pores, derived from confined host-guest interactions in the interplay of solvent molecules.
Transition-metal-embedded carbon nanotubes (CNTs) have been accepted as a novel type of sensing material due to the combined advantage of the transition metal, which possesses good catalytic behavior for gas interaction, and CNTs, with large effective surface areas that present good adsorption ability towards gas molecules. In this work, we simulate the adsorption of O2 and O3 onto Rh-doped CNT in an effort to understand the adsorbing behavior of such a surface. Results indicate that the proposed material presents good adsorbing ability and capacities for these two gases, especially O3 molecules, as a result of the relatively large conductivity changes. The frontier molecular orbital theory reveals that the conductivity of Rh-CNT would undergo a decrease after the adsorption of two such oxidizing gases due to the lower electron activity and density of this media. Our calculations are meaningful as they can supply experimentalists with potential sensing material prospects with which to exploit chemical sensors.
하폐수처리를 위한 분리막 생물반응기에서 막오염을 유발시키는 원인물질로 알려진 정족수감지 신호분자인 AHL과 AI-2를 동시 억제하는 연구를 하였다. AHL 분해 효소를 생산하는 BH4와 AI-2 불활성 물질을 분비하는 DKY-1를 각각 하이드로겔 담체에 고정시켜 분리막 생물반응기에 적용시킴으로써 막오염을 효과적으로 제어하고자 한다. 주기적으로 반응기의 신호분자 농도를 LC/MS/MS로 측정하였으며, 막투과 압력 증가 데이터를 바탕으로 막오염의 완화 정도를 살펴보았다. 이외에 총질소, 화학적 산소요구량, 미생물 플록 크기, 미생물 농도 등을 측정하여 반응기의 상태와 폐수의 처리효율을 비교 고찰하였다. 본 연구는 연구재단 이공분야 기초연구사업(NRF-2016R1A2B2013776)의 지원을 받아 수행되었습니다.
전자 주게-전자 받게 (D-A) 구조를 가지는 퀴녹살린 유도체들을 산 촉매하 탈수 반응과 Suzuki coupling 반응을 이용하여 합성하였다. 퀴녹살린을 중심으로 dimethylaminobenzene (DMAB)과 triphenylamine이 수평방향과 수직방향에 각각 위치한 QxN2TPA, 그리고 동일한 구조에 DMAB와 methoxy substituted triphenylamine이 조합된 QxN2TPAOME를 합성하였다. UV-visible 분광법 및 순환 전압 전류법을 이용하여, 합성된 유기 단분자들의 광학 및 전기화학적 특성 분석을 실시하였다. QxN2TPA, QxN2TPAOME의 최대 흡수 파장은 THF 용액에서 각각 308, 313 nm를 나타내었으며, HOMO 및 LUMO 에너지 준위는 각각 QxN2TPA(-5.12, -2.98 eV), QxN2TPAOME(-5.01, -2.98 eV)를 나타내었다. 또한, 합성된 퀴녹살린 유도체들을 다양한 용매에 대하여 우수한 용매 의존 발색 효과를 나타내었는데, 이는 분자 내 전하 전달 과정을 통하여 생성된 큰 극성을 지니는 여기상태의 분자 에너지가 용매의 극성이 증가할수록 안정화되는 전자 주게 및 전자 받게 구조를 갖는 공액 물질의 특성에 기인한다.