검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 24

        1.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        상변화 물질(PCM)은 상전이 동안 에너지를 흡수하거나 방출할 수 있는 잠열 저장 물질로 활용된다. 최근 수십 년 동 안, 연구자들은 다양한 온도 적용을 위한 건설 물질로의 다양한 PCM의 통합을 탐구해 왔다. 그러나, PCM을 통합하는 콘크리트 의 기계적 및 열적 반응은 통합 방법에 의해 영향을 받는다. PCM을 콘크리트에 추가하기 위한 여러 기술이 제안되었다. 그럼 에도 불구하고, 콘크리트에 마이크로 캡슐화 PCM(m-PCM)의 통합은 종종 기계적 강도의 상당한 감소를 초래한다. 기존 콘크리 트에 m-PCM의 추가와 관련된 한계를 극복하기 위해, 예외적인 강도 및 내구성 특성으로 인해 초고성능 시멘트 복합체(UHPCC) 가 선호된다. 따라서, 본 연구에서는 기존 기술의 단점을 해결하기 위해 PCM을 통합한 신규 나노 엔지니어링 UHPCC를 개발하 였다. 또한, 시멘트 복합체의 기계적 및 열적 성능을 향상시키기 위해 다중 벽 탄소 나노튜브(MWCNT)를 추가하였다. 결과는 MWCNT의 포함이 기계적 성능을 향상시켰을 뿐만 아니라 시멘트 복합체의 열적 성능을 향상시켰다는 것을 보여 주었다.
        4,000원
        2.
        2023.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To develop a high capacity lithium secondary battery, a new approach to anode material synthesis is required, capable of producing an anode that exceeds the energy density limit of a carbon-based anode. This research synthesized carbon nano silicon composites as an anode material for a secondary battery using the RF thermal plasma method, which is an ecofriendly dry synthesis method. Prior to material synthesis, a silicon raw material was mixed at 10, 20, 30, 40, and 50 wt% based on the carbon raw material in a powder form, and the temperature change inside the reaction field depending on the applied plasma power was calculated. Information about the materials in the synthesized carbon nano silicon composites were confirmed through XRD analysis, showing carbon (86.7~52.6 %), silicon (7.2~36.2 %), and silicon carbide (6.1~11.2 %). Through FE-SEM analysis, it was confirmed that the silicon bonded to carbon was distributed at sizes of 100 nm or less. The bonding shape of the silicon nano particles bonded to carbon was observed through TEM analysis. The initial electrochemical charging/ discharging test for the 40 wt% silicon mixture showed excellent electrical characteristics of 1,517 mAh/g (91.9 %) and an irreversible capacity of 133 mAh/g (8.1 %).
        4,000원
        3.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In today’s world, carbon-based materials research is much wider wherein, it requires a lot of processing techniques to manufacture or synthesize. Moreover, the processing methods through which the carbon-based materials are derived from synthetic sources are of high cost. Processing of such hierarchical porous carbon materials (PCMs) was slightly complex and only very few methods render carbon nano-materials (CNMs) with high specific surface area. Once it is processed, which paves a path to versatile applications. CNMs derived from biological sources are widespread and their application spectrum is also very wide. This review focuses on biomass-derived CNMs from various plant sources for its versatile applications. The major thrust areas of energy storage include batteries, super-capacitors, and fuel cells which are described in this article. Meanwhile, the challenges faced during the processing of biomass-derived CNMs and their future prospects are also discussed comprehensively.
        7,000원
        4.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fluorescent carbon nano-materials with quantum confinement and edge effects have recently piqued attention in a variety of applications, including biological imaging, drug delivery, optoelectronics and sensing. These nano-materials can be synthesized from a variety of carbon-based precursors using both top-down and bottom-up methods. Coal and its derivatives typically include a vast crystalline network and condensed aromatic ring cluster, which can be easily exfoliated by chemical, electrochemical, or physical processes to produce nano-materials. As a result, they are regarded as a low-cost, abundant and efficient carbon source for the fabrication of high-yield nano-materials. Nano-materials synthesized from coal-based precursors have outstanding fluorescence, photostability, biocompatibility and low toxicity, among other properties. Their properties in optical sensors, LED devices, bio-imaging, and photo and electro-catalyst applications have already been investigated. In this review, we have highlighted current developments in the synthesis, structural properties and fluorescence properties of nano-materials synthesized from coal-based precursors.
        7,800원
        5.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        There is increasing demand for the development of a new material with high strength, high stiffness, and good electrical conductivity that can be used for high-voltage direct current cables. In this study, we develop aluminumbased composites containing C60 fullerenes, carbon nanotubes, or graphene using a powder metallurgical route and evaluate their strength, stiffness, coefficient of thermal expansion, and electrical conductivity. By optimizing the process conditions, a material with a tensile strength of 800 MPa, an elastic modulus of 90 GPa, and an electrical conductivity of 40% IACS is obtained, which may replace iron-core cables. Furthermore, by designing the type and volume fraction of the reinforcement, a material with a tensile strength of 380 MPa, elastic modulus of 80 GPa, and electrical conductivity of 54% IACS is obtained, which may compete with AA 6201 aluminum alloys for use in all-aluminum conductor cables.
        4,000원
        6.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The automotive industry has focused on the development of metallic materials with high specific strength, which can meet both fuel economy and safety goals. Here, a new class of ultrafine-grained high-Mn steels containing nano-scale oxides is developed using powder metallurgy. First, high-energy mechanical milling is performed to dissolve alloying elements in Fe and reduce the grain size to the nanometer regime. Second, the ball-milled powder is consolidated using spark plasma sintering. During spark plasma sintering, nanoscale manganese oxides are generated in Fe-15Mn steels, while other nanoscale oxides (e.g., aluminum, silicon, titanium) are produced in Fe-15Mn-3Al-3Si and Fe-15Mn-3Ti steels. Finally, the phases and resulting hardness of a variety of high-Mn steels are compared. As a result, the sintered pallets exhibit superior hardness when elements with higher oxygen affinity are added; these elements attract oxygen from Mn and form nanoscale oxides that can greatly improve the strength of high-Mn steels.
        4,000원
        7.
        2018.04 구독 인증기관·개인회원 무료
        This paper reviews on nano-materials as part of a study to apply nano-technology related technologies to the construction field. First, the synthesis method of nano-materials was examined. Secondly, the mechanical application method of nano-materials was investigated. Finally, the analysis method of nano-materials was investigated.
        8.
        2016.05 구독 인증기관·개인회원 무료
        In olefin/paraffin separation process, new technology such as membrane separation process has been ever demanding for both economic and environmental reasons. facilitated olefin transport membrane, containing positively charged silver nanoparticles (Ag NPs) by electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) as olefin carriers dispersed in poly(vinyl pyrrolidone) (PVP), shows extremely high separation performance for propylene/propane mixtures. However, higher permeance is always demanding for practical applications. In this study, POSSs were added to PVP/Ag NPs/TCNQ membranes. Among various kinds of POSS, trisilanolisooctyl POSS showed higher permeance with a moderate selectivity. Therefore it is concluded that mesoporous POSS is an effective additive in improving the gas permeance.
        9.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This review presents current progress in the preparation methods of liquid crystalline nanocarbon materials and the liquid crystalline spinning method for producing nano-carbon fibers. In particular, we focus on the fabrication of liquid crystalline carbon nanotubes by spinning from superacids, and the continuous production of macroscopic fiber from liquid crystalline graphene oxide.
        4,000원
        10.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the effect of temperature effect of the rubber matrix filled with nano sized silica particles composites with silica volume fraction of 19–25% was investigated by the Charpy impact test. The Charpy impact test was conducted in the temperature range from –40°C to 0°C. The critical energy release rate GIC of the rubber matrix composites filled with nano sized silica particles was considerably affected by temperature and it was shown that the maximum value was appeared at higher temperature between temperature tested and it was shown that the value of GIC increases as temperature tested increases. The major fracture mechanisms were matrix deformation, silica particle debonding and delamination, microcrack between particles and matrix, and/or pull out between particles and matrix which is ascertained by SEM photographs of Charpy impact surfaces fracture.
        4,000원
        11.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study is undertaken to evaluate the effect of volume fraction on the results of Charpy impact test for the rubber matrix filled with nano sized silica particles composites. The Charpy impact tests are conducted in the temperature range 0°C and –10°C. The range of volume fraction of silica particles tested are between 11% to 25%. The critical energy release rate GIC of the rubber matrix composites filled with nano sized silica particles is affected by silica volume fraction and it is shown that the value of GIC decreases as volume fraction increases. In regions close to the initial crack tip, fracture processes such as matrix deformation, silica particle debonding and delamination, and/or pull out between particles and matrix which is ascertained by SEM photographs of Charpy impact fracture surfaces.
        4,000원
        13.
        2013.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The characteristics of abrasive wear of the rubber matrix composites filled with nano sized silica particles were investigated at ambient temperature by pin-on-disc friction test. The range of volume fraction of silica particles tested are between 11% to 25%. The cumulative wear volume and friction coefficient of these materials on particle volume fraction were determined experimentally. The major failure mechanisms were lapping layers, deformation of matrix, ploughing, deboding of particles and microcracking by scanning electric microscopy photograph of the tested surface. The cumulative wear volume showed a tendency to increase nonlinear with increase of sliding distance. As increasing the silica particles of these composites indicated higher friction coefficient.
        4,000원
        14.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        나노 소재는 표면적이 매우 크고 크기나 기공이 균일하여 분리막에서 물질 전달 통로나 특수한 기능성을 갖게 하는 소재로 이용이 가능하다. 그러나 나노 소재 및 나노 기술을 기반으로 한 분리막의 상용화를 위한 여러 가지 기술적인 한계가 존재하며 최근 나노 소재 및 제조 기술이 발전하고 다양해짐에 따라 분리막에 나노 소재 및 기술을 활용하려는 연구가 많이 진행되고 있다. 나노 소재 및 기술을 활용하는 경우 기존 분리막의 투과도 및 선택도를 크게 높일 수 있으며 열적, 화학적, 기계적 안정성 및 내오염성을 향상시키거나 기능성 소재를 활용하여 분리막에 새로운 기능을 부여할 수 있다.
        4,200원
        15.
        2009.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We proposed the new nano-carbon ball (NCB) materials for eliminating the total volatile organic compounds(TVOCs) from the felt which is built in the car. The concentrations of acetaldehyde and formaldehyde of the original felts were varied upon the different production lots. Acetaldehyde in the felt can be eliminated to target level(0.2μg) after introducing 0.5 wt% of NCB into the felt. Detector tube method for analyzing formaldehyde gas was more accurate than HPLC method. Formaldehyde can be eliminated to target level (64 ppb) after introducing 0.5 wt% of NCB into the felt. We also found that TVOC can be reduced to target level (0.32μg) after introducing 2.0 wt% of NCB. Upon introducing small amounts of NCB into the felt, it was possible that the level of formaldehyde, acetaldehyde and TVOC formed from the felts can be reduced to the target level. We also suggest the effective analyzing method of TVOCs.
        4,000원
        16.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Thin films of carbon-nano materials (CNMs) of different morphology have been successfully deposited on ceramic substrate by CVD at temperatures 800℃, 850℃ and 900℃ using plant based oils in the presence of transition metal catalysts (Ni, Co and Ni/Co alloys). Based on the return and insertion loss, microwave absorption properties of thin film of nanocarbon material are measured using passive micro-Strip line components. The result indicates that amongst CNMs synthesized from oil of natural precursors (mustered oil - Brassica napus, Karanja oil - Pongamia glabra, Cotton oil - Gossipium hirsuta and Neem oil - Azadirachta indica) carbon nano fibers obtained from neem's seed oil showed better microwave absorption (~20dB) in the range of 8.0 GHz to 17.90 GHz.
        3,000원
        17.
        2003.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the control of pore-characteristics of nano-porous materials has been studied extensively because of their unique applications, which includes size-selective separation, gas adsorption/storage, heterogeneous catalysis, etc. The most widely adopted techniques for controlling pore characteristics include the utilization of pillar effect by metal oxide and of templates such as zeolites. More recently, coordination polymers constructed by transition metal ions and bridging organic ligands have afforded new types of nano-porous materials, porous metal-organic framework(porous MOF), with high degree and uniformity of porosity. The pore characteristics of these porous MOFs can be designed by controlling the coordination number and geometry of selected metal, e.g transition metal and rare-earth metal, and the size, rigidity, and coordination site of ligand. The synthesis of porous MOF by the assembly of metal ions with di-, tri-, and poly-topic N-bound organic linkers such as 4,4'-bipyridine(BPY) or multidentate linkers such as carboxylates, which allow for the formation of more rigid frameworks due to their ability to aggregate metal ions into M-O-C cluster, have been reported. Other porous MOF from co-ligand system or the ligand with both C-O and C-N type linkage can afford to control the shape and size of pores. Furthermore, for the rigidity and thermal stability of porous MOF, ring-type ligand such as porphyrin derivatives and ligands with ability of secondary bonding such as hydrogen and ionic bonding have been studied.
        4,000원
        18.
        1996.06 구독 인증기관·개인회원 무료
        Ceramic based nanocomposite, in which nano-sized ceramics and metals were dispersed within matrix grains and/or at grain boundaries, were successfully fabricated in the ceramic/cerarnic and ceramic/metal composite systems such as /SiC, /, MgO/SiC, mullite/SiC, /SiC, /B, /W, /Mo, /Ni and /Mo systems. In these systems, the ceramiclceramic composites were fabricated from homogeneously mixed powders, powders with thin coatings of the second phases and amorphous precursor composite powders by usual powder metallurgical methods. The ceramiclmetal nanocomposites were prepared by combination of H2 reduction of metal oxides in the early stage of sinterings and usual powder metallurgical processes. The transmission electron microscopic observation for the /SiC nanocomposite indicated that the second phases less than 70nm were mainly located within matrix grains and the larger particles were dispersed at the grain boundaries. The similar observation was also identified for other cerarnic/ceramic and ceramiclmetal nanocornposites. The striking findings in these nanocomposites were that mechanical properties were significantly improved by the nano-sized dispersion from 5 to 10 vol% even at high temperatures. For example, the improvement in hcture strength by 2 to 5 times and in creep resistance by 2 to 4 orders was observed not only for the ceramidceramic nanocomposites but also for the ceramiclmetal nanocomposites with only 5~01%se cond phase. The newly developed silicon nitride/boron nitride nanocomposites, in which nano-sized hexagonal BN particulates with low Young's modulus and fracture strength were dispersed mainly within matrix grains, gave also the strong improvement in fracture strength and thermal shock fracture resistance. In presentation, the process-rnicro/nanostructure-properties relationship will be presented in detail. The special emphasis will be placed on the understanding of the roles of nano-sized dispersions on mechanical properties.
        19.
        1996.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        초미립 SiC 분말을 2차상으로 Si3N4에 첨가하여 SiC/Si3N4 나노 복합체를 핫프레스법과 가스압소결고 제조하였다. 2차상으로 첨가한 SiC의 입자 크기가 β-Si3N4 나노 복합체를 제조할 수 있었다. 사온에서 800˚C까지는 강도의 1000˚C이상에서는 강도는 급격한 감소를 보였으며 이는 소결조제로 첨가한 AI2O3, Y2O3와 SiO2가 β-Si3N4의 입계에 유리상을 형성하였기 때문에 해석된다.
        4,000원
        20.
        2023.09 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 고압 환경에서 합성된 결정 입자의 크기에 원시료(starting materials)의 상(phase)이 미치 는 영향을 확인했다. 상이 다른 두 가지 원시료인 비정질 시료와 나노파우더 시료를 이용해 알루미늄이 부화된 고 압의 환원환경에서 삼원계 시스템인 브리지마나이트-페리클레이스-칼슘 페라이트(calcium ferrite)상의 MgAl2O4을 합성했다. 시료는 40 GPa 2000 K의 압력온도 조건에서 20 시간 동안 가열하여 합성했다. 합성된 시료는 비정질 시료를 이용한 경우 입자 크기가 50-200 nm였으며, 나노파우더를 이용한 경우 ~500 nm로 나타났다. 이러한 차이 는 1) 시료가 합성된 2000 K의 온도가 낮아 비정질 시료의 경우 결정 성장보다 결정핵 성장이 더 우세하게 나타 났거나 2) 시료에 존재할 수 있는 산화 환원반응 상태의 차이로 생각된다. 추후 다원계 시스템에 대한 고압 실험을 수행할 때 비정질 시료보다 나노파우더를 원시료로 이용하는 것이 결정 성장에서 더 유리할 것으로 생각된다.
        1 2