검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15

        1.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, (GaN)1-x(ZnO)x solid solution nanoparticles with a high zinc content are prepared by ultrasonic spray pyrolysis and subsequent nitridation. The structure and morphology of the samples are investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The characterization results show a phase transition from the Zn and Ga-based oxides (ZnO or ZnGa2O4) to a (GaN)1-x (ZnO)x solid solution under an NH3 atmosphere. The effect of the precursor solution concentration and nitridation temperature on the final products are systematically investigated to obtain (GaN)1-x(ZnO)x nanoparticles with a high Zn concentration. It is confirmed that the powder synthesized from the solution in which the ratio of Zn and Ga was set to 0.8:0.2, as the initial precursor composition was composed of about 0.8-mole fraction of Zn, similar to the initially set one, through nitriding treatment at 700oC. Besides, the synthesized nanoparticles exhibited the typical XRD pattern of (GaN)1-x(ZnO)x, and a strong absorption of visible light with a bandgap energy of approximately 2.78 eV, confirming their potential use as a hydrogen production photocatalyst.
        4,000원
        3.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Current synthesis processes for titanium dioxide (TiO2) nanoparticles require expensive precursors or templates as well as complex steps and long reaction times. In addition, these processes produce highly agglomerated nanoparticles. In this study, we demonstrate a simple and continuous approach to synthesize TiO2 nanoparticles by a salt-assisted ultrasonic spray pyrolysis method. We also investigate the effect of salt content in a precursor solution on the morphology and size of synthesized products. The synthesized TiO2 nanoparticles are systematically characterized by X-ray diffraction, transmission electron micrograph, and UV-Vis spectroscopy. These nanoparticles appear to have a single anatase phase and a uniform particle-size distribution with an average particle size of approximately 10 nm. By extrapolating the plots of the transformed Kubelka-Munk function versus the absorbed light energy, we determine that the energy band gap of the synthesized TiO2 nanoparticles is 3.25 eV
        4,000원
        4.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Despite numerous advances in the preparation and use of GaN, and many leading-edge applications in lighting technologies, the preparation of high-quality GaN powder remains a challenge. Ammonolytic preparations of polycrystalline GaN have been studied using various precursors, but all were time-consuming and required high temperatures. In this study, an efficient and low-temperature method to synthesize high-purity hexagonal GaN powder is developed using sub-micron Ga2O3 powder as a starting material. The sub-micron Ga2O3 powder was prepared by an ultrasonic spray pyrolysis process. The GaN powder is synthesized from the sub-micron Ga2O3 powder through a nitridation treatment in an NH3 flow at 800℃. The characteristics of the synthesized powder are systematically examined by X-ray diffraction, scanning and transmission electron microscopy, and UV-vis spectrophotometer.
        4,000원
        5.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The structural formation of inorganic nanoparticles dispersed in polymer matrices is a key technology for producing advanced nanocomposites with a unique combination of optical, electrical, and mechanical properties. Barium titanate (BaTiO3) nanoparticles are attractive for increasing the refractive index and dielectric constant of polymer nanocomposites. Current synthesis processes for BaTiO3 nanoparticles require expensive precursors or organic solvents, complicated steps, and long reaction times. In this study, we demonstrate a simple and continuous approach for synthesizing BaTiO3 nanoparticles based on a salt-assisted ultrasonic spray pyrolysis method. This process allows the synthesis of BaTiO3 nanoparticles with diameters of 20-50 nm and a highly crystalline tetragonal structure. The optical properties and photocatalytic activities of the nanoparticles show that they are suitable for use as fillers in various nanocomposites.
        4,000원
        6.
        2016.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        TiOF2, which has remarkable electrochemical and optical properties, is used in various applications such as Li-ion batteries, electrochemical displays, and photocatalysts. In addition, it is possible to utilize the template which is allowed to synthesize fluorine doped TiO2 powders with hollow or faceted structures. However, common synthesis methods of TiOF2 powders have some disadvantages such as the use of expensive and harmful precursors and batchtype processes with a limited production scale. In this study, we report a synthetic route for preparing TiOF2 powders by using an inexpensive and harmless precursor and a continuous ultrasonic spray pyrolysis process under a controlled atmosphere to address the aforementioned problems. The synthesized powder has an average size of 1 μm, a spherical shape, a pure TiOF2 phase, and exhibits a band-gap energy of 3.2 eV.
        3,000원
        7.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        육방정계 우르자이츠형의 산화아연은 n형 반도체로써 3.37 eV의 넓은 밴드갭 에너지와 60 meV의 큰 엑시톤 바인딩 에너지를 가진 물질이다. 가스센서, 발광 다이오드, 염료 감응 태양 전지, 염 료오염의 분해 등의 넓은 범위에서 활용이 가능하다. 합성 시 마이크로파 수열합성법을 사용하게 되면 높은 수율, 빠른 반응속도, 에너지 절약의 장점이 있다. 아민첨가제는 수산이온 생성 및 킬레이트 효과 로 인해 산화아연 입자 형상을 조정하는 역할을 한다. 본 논문에서는 전구체로는 질산아연육수화물을 사 용하였고, 형상조정제로는 에탄올아민, 에틸렌디아민, 디에틸렌트리아민, 헥사메틸렌테트라민을 사용하였 다. 수산화소듐을 사용하여 용액을 pH 11로 조정하였다. 합성된 산화아연은 별모양, 막대형, 꽃모양, 원 추형의 다양한 형상을 확인할 수 있었다. 아민첨가제에 의한 물리·화학적 특성과 광학적 특성을 분석하 기 위해 XRD, SEM, EDS, FT-IR, UV-vis 스펙트럼, PL 스펙트럼을 사용하였다.
        4,000원
        9.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To prepare very stable acrylic type emulsion having a visible ray absorption property, in-situ preparation technique of CuxS nanoparticle was adopted. Firstly, the acylic emulsions of methyl methacrylate(MMA), butyl acrylate(BA), and acrylonitrile(AN) were synthesized by pre-emulsion polymerization at 60℃ in the presence of anionic surfactant. Secondly, CuxS nanocomposited emulsions were directly prepared in the prepolymerized acrylic emulsion with CuSO4 at 50℃. The presnce of CuxS nanoparticle in emulsion was confirmed by SEM and EDS. The final CuxS nanocomposited emulsion showed an olive-green colour and good emulsion stability up to 1 month. In addition the PET films coated with our CuxS nanocomposited emulsion absorbed effectively the visible ray.
        4,000원
        10.
        2010.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Mo thin films were used for the back electrode because of the low resistivity in the Mo/CuInGaSe2 contact inchalcopyrite solar cells. 1µm thick Mo thin films were deposited on soda lime glass by varying the Ar pressure with the dc-magnetron sputtering process. The effects of the Ar pressure on the morphology of the Mo back electrode were studied andthe relationships between the morphology and electro-optical properties, namely, the resistivity as well as the reflectance of theMo thin films, were investigated. The resitivity increased from 24µΩ·cm to 11833µΩ·cm; this was caused by the increasedsurface defect and low crystallinity as the Ar pressure increased from 3×10−3 to 3×10−2Torr. The surface morphologies ofthe Mo thin films changed from somewhat coarse fibrous structures to irregular and fine celled strucutures with increased surfacecracks along the cell boundaries, as the Ar pressure increased from 3×10−3 to 3×10−2Torr. The changes of reflectances in thevisible light range with Ar pressures were mainly attributed to the surface morphological changes of the Mo thin films. Thereflectance in the visible light range showed the highest value of 45% at 3×10−3Torr and decreased to 18.5% at 3×10−2Torr.
        4,000원
        11.
        2009.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Thin films of single-wall carbon nanotubes (SWNT) with various thicknesses were fabricated, and their optical andelectrical properties were investigated. The SWNTs of various thicknesses were directly coated in the arc-discharge chamberduring the synthesis and then thermally and chemically purified. The crystalline quality of the SWNTs was improved by thepurification processes as determined by Raman spectroscopy measurements. The resistance of the film is the lowest for thechemically purified SWNTs. The resistance vs. thickness measurements reveal the percolation thickness of the SWNT film tobe ~50nm. Optical absorption coefficient due to Beer-Lambert is estimated to be 7.1×10-2nm-1. The film thickness for 80%transparency is about 32nm, and the sheet resistance is 242Ω/sq. The authors also confirmed the relation between electricalconductance and optical conductance with very good reliability by measuring the resistance and transparency measurements.
        4,000원
        12.
        2005.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The influence of fluorescence, scattering, and absorbance in turbid material by light scattering was interpreted by the scattered fluorescence intensity and wavelength. The effect of optical property in scattering media was investigated. It is very important to study the charge coupled device(CCD) in spectrometry because we can use the molecular energy level, molecular structure, absorption or emission, intermolecular reaction, weakly bound molecular energy, photochemistry, fluorescence and photodynamic therapy. CCD is very essential to study the molecular structure and medical engineering combined laser spectroscopy in the modem physical and chemistry. Accordingly, this study has designed and manufactured the electromagnetic spectrometry with CCD, and has analyzed the hematoporphyrin derivative.
        4,000원
        13.
        1995.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        K6P4 O13 flux로부터 30×40×70㎣ 크기의 inclusion이 없는 KTP 단결성을 성장시켰다 성장된 KTP 결정의 SHG 출력 특성 측정 결과 위상정합각은 θ=90˚, φ=23.3˚이었고, φ방향의 angular acceptance는 약 2˚이었다. KTP 결정내 굴절율 변화에 따른 위상정합각 편차는 최대 0.17˚까지 변하였다. 또한 Nd : YAG와 brewster plate를 채용한 내부공진형의 diode pumped SHG module에 KTP 결정을 삽입하여 20mW의 녹색 laser를 얻었다.
        4,000원
        14.
        2015.01 KCI 등재 서비스 종료(열람 제한)
        본 연구는 고상법으로 형광체를 합성하였다. 모체 물질은 La2W3O12에 활성제로 Eu3+이온을 첨가하여 활성제 조성 변화에 따른 XRD 분석과 여기 및 방출 스펙트럼 및 온도에 따른 형광 스펙트럼 분석과 수명시간을 측정하였다. La2W3O12:Eu3+의 1 mol%의 XRD 스펙트럼은 ICSD 카드 (78180)에 보고된 데이터 스펙트럼과 비교하였을 때 XRD 스펙트럼이 잘 일치함을 확인 하였다. La2W3O12형광체에 활성제로 Eu3+이온 1 mol%를 첨가한 여기 스펙트럼에서는 286 nm 근처에서 286 nm 넓은 전하전달밴드가 관찰된다. 이 전하전달밴드는 WO4그룹과 Eu3+이온의 전하 전달 밴드이며 O2--W6+,O2--Eu3+의 ligand-to-metal 전하 전달 흡수가 이루어진다. 350〜500 nm 영역에서는 Eu3+의 f-f 전이에 의한 피크가 나타났다. 여기 스펙트럼에서 Eu3+의 7F0 → 5D4,5D4,5L6,5G4,5D3,5D2전이에 해당한다. 방출 스펙트럼은 280, 395 nm로 각각 여기한 결과 Eu3+이온의 5D0 → 7F2(618nm)에서 강한 피크가 보였다. 희토류 이온이 도핑 되지 않은 La2W3O12형광체를 266 nm로 여기하여 온도에 변화 따른 방출 스펙트럼은 저온에서 상온으로 갈수록 형광의 세기가 약하게 나타났다. 온도에 따른 수명시간은 7 K(114 μs), 100 K(94 μs), 200 K(10 μs), 300 K(0.5 μs)로 나타났다.