본 논문에서는 이산화탄소 친화적인 PBEM-POEM (PBE) 공중합체를 기반으로 고분자 블렌드 분리막을 제조하 는 방법을 제시한다. PBE 공중합체는 자유 라디칼 중합 반응을 통해 손쉽게 합성이 가능하며, 이를 상용 고분자인 PEG와 다 양한 비율로 혼합하여 이산화탄소/질소 분리막을 제조하였다. 이산화탄소/질소 분리 성능을 테스트한 결과, PEG의 함량이 높을수록 이산화탄소 투과도는 감소하는 반면 이산화탄소/질소 선택도는 크게 증가하는 상충(trade-off) 관계가 나타났다. 그러 나 PBE/PEG (9 : 1)과 PBE/PEG (7 : 3)을 비교하면 이산화탄소 투과도는 단지 8.3% 감소한 반면에 질소 투과도는 69.1%나 감소하였다. 따라서 이산화탄소/질소 선택도가 33.8에서 100.3으로 크게 증가하였다. 이것은 PBE 공중합체의 80%를 차지하 는 POEM 사슬이 PEG와 상호작용하여 더욱 조밀한 구조가 되었기 때문이며, 이를 FT-IR, XRD, SEM 분석으로 확인하였다. PBE/PEG (7 : 3) 블렌드 막이 가장 최적의 기체 분리 성능을 가졌고, 이산화탄소투과도는 170.5 GPU, 이산화탄소/질소 선택 도는 100.3이었다.
최근 온실가스로 인해 기후 이상현상이 급증하면서 이산화탄소 분리 및 포집 기술에 관한 관심이집중 되고 있다. 본 연구에서는 이산화탄소 분리를 위한 고분자 분리막 재료로 극성 기체인 CO2에 대한 높은 용해선택도를 보이는 polyethylene glycol(PEG)와 폴리설폰 공중합체를 제조하였다. 공중합체의 합성 여부는 H-NMR 및 FT-IR 분석을 통해 확인되었다. 도입된 PEG 분자량에 따른 기체 분리 특성 및 열적, 물리적 특성이 평가되었다. 도입된 PEG의 분자량이 증 가할수록 이산화탄소 투과도와 CO2/N2 선택도가 증가하는 것을 확인 하였다.
PEBAX는 높은 CO2 선택도로 인하여 CO2 포집을 위한 분리막 연구에 널리 사용하고 있다. 본 연구에서는 Poly(ether block amides) (PEBAX) 2533을 에탄올에 용해, support를 PAN(Polyacrylonitrile), PSf(Polysulfone)로 사용하여 복합평 막을 제조하였다. 투과선택도를 향상시키기 위하여 Poly (ethylene glycol) (PEG) 를 첨가하여 막을 제조한 후 CO2, 와 N2 기체에 대한 투과도와 선택도를 평가 하였다. PEG도입에 의한 PEBAX 복합막 제조는 PEBAX가 가지고 있는 투과도 한계를 향상 시킬 수 있다.
상업적으로 이용되는 폴리스티렌계 이온교환막은 제조 공정이 쉽고 간단하지만 막이 가지는 취성 때문에 내구성이 약하다는 단점을 가지고 있다. 이를 보완하기 위하여 친수성 그룹인 poly(ethylene glycol)을 곁사슬로 가지고 있는 poly(ethylene glycol)methyl ether methacrylate를 공중합시켜 음이온 교환막을 합성하였다. 지지체로는 내화학성 및 기계적 강도가 우수한 다 공성 PE 지지체를 사용하였고, 여기에 다양한 조성의 vinylbenzyl chloride, styrene, poly(ethylene glycol)methyl ether methacrylate, divinylbenzene, benzoyl peroxide를 녹인 단량체 용액을 지지체 기공에 채운 뒤 열중합 가교시켜 trimethylamine을 이 용하여 음이온 교환기를 도입해 세공충전 음이온 교환막을 합성하였다. 또한 poly(ethylene glycol)methyl ether methacrylate의 곁사슬 길이와 각 단량체가 차지하는 비율의 변화가 음이온 교환막의 전기화학적 특성에 미치는 영향을 알아보았다.
본 연구는 둘 이상의 기체혼합물에서 높은 이산화탄소 분리성능을 위해 Poly(ethylene glycol)로 개질된 Graft copolymer로 film을 제조 하였다. 높은 기체 선택성을 가져 분리막으로 널리 사용되는 Polysulfone을 클로로메틸화하고, 구조적으로 이산화탄소에 높은 친화성을 가지는 Poly(ethylene glycol)을 사용하였다. 분자량이 5000인 Poly ethylene glycol을 사용하였고 합성된 공중합체는 TGA와 DSC로 고분자의 열적특성을 확인하고 FT-IR 과 1H-NMR을 이용하여 화학구조를 분석하였다. Time lag 기계를 사용하여 Film의 기체투과 성능을 조사하였으며, Poly(ethylene glycol)의 분자량에 따른 효과를 알아보았다.
Sulfonated poly(arylene ether sulfone) (SPAES) random copolymers have been perceived as alternatives to perfluorinated sulfonic acid ionomers used as polymer electrolyte membranes for fuel cells. SPAES copolymers are suffering from degradation under harsh fuel cell operation conditions. One solution to overcome the decomposition issue is to fill SPAES copolymers into polymeric support films (e.g., poly(tetrafluoro ethylene), PTFE) with interconnected porous structures. It is difficult to fill the SPAES copolymers dissolved in polar aprotic solvents into PTFE support films owing to their different surface energies. In this study, a SPAES nanodispersion in a water-alcohol mixture is used to make defect-free pore-filling membranes where poly(ethylene glycol) oligomers are added to induce advanced morphologies for fast proton conduction.
최근 온실가스로 인해 기후 이상현상이 급증하면서 이산화탄소 분리 및 포집기술에 관한 관심이 집중 되고 있다. 본 연구에서는 이산화탄소 분리를 위한 고분자 분리막 재료로 극성 기체인 CO2에 대한 높은 용해선택도를 보이는 polyethylene glycol(PEG)와 폴리설폰 공중합체를 제조하였다. 공중합체의 합성 여부는 H-NMR 및 FT-IR 분석을 통해 확인되었다. 도입된 PEG 분자량에 따른 기체 분리 특성 및 열적, 물리적 특성이 평가되었다. 도입된 PEG의 분자량이 증가할수록 이산화탄소 투과도와 CO2/N2 선택도가 증가하는 것을 확인 하였다.
본 연구는 둘 이상의 기체혼합물에서 높은 이산화탄소 분리성능을 위해 Poly(ethylene glycol)로 개질된 Graft copolymer로 film을 제조 하였다. 높은 기체 선택성을 가져 분리막으로 널리 사용되는 Polysulfone을 클로로메틸화하고, 구조적으로 이산화탄소에 높은 친화성을 가지는 Poly(ethylene glycol)을 사용하였다. 분자량이 5000인 Poly ethylene glycol을 사용하였고 합성된 공중합체는 TGA와 DSC로 고분자의 열적특성을 확인하고 FT-IR 과 1H-NMR을 이용하여 화학구조를 분석하였다. Time lag 기계를 사용하여 Film의 기체투과 성능을 조사하였으며, Poly(ethylene glycol)의 분자량에 따른 효과를 알아보았다.
다공성 Poly(propylene) 분리막의 지지 하에 전해질 용액 (EC/DEC 1 : 1 혼합물 내의 LiPF6 1 M 용액) 내에서 DEGDMA [Di(ethylene glycol) dimethacrylate]의 70℃ 열중합을 통하여 겔 고분자 전해질(GPE)막이 합성 되었다. 합성된 겔 고분자 전해질막의 이온전도도 및 전기화학적 안정성은 AC 임피던스법 및 CV (cyclic voltametry)법에 의하여 측정 평가하였다. 겔 고분자를 전해질로, 그리고 양극 및 음극으로는 각각 LiMi0.8Co0.2O2 및 graphite로 이용하여 리튬이온전지(LIB)도 제작하였다. 열중합을 통하여 리튬 이온전지에 적합한 이온전도도(10 -3 S/cm 이상) 및 전기화학적 안정성을 보이면서 자체적인 성상을 유지하는 겔 고분자 전해질막을 얻을 수 있었다. 단량체 함량 5%의 전구체로 제작한 겔 고분자 전지는 단량체 함량이 7.0% 및 10.0%인 경우에 비하여 우수한 고율 및 충-방전 효율을 보였다.
In this study, block copolymer of polystyrene and polyethylene glycol methyl ether methacrylate(PEGMA) by ATRP(atom transfer radical polymerization) method was synthesized. 4 arm-molecule which contained halogen atom was synthesized for an initiator. With 4 arm-molecule monodispered polystyrene were synthesized by ATRP method. The molecular change of synthesized monodispersed polystyrene with respect to time was investigated and living polymer characteristic was confirmed. Block copolymer of polystyrene and polyethylene glycol methyl ether methacrylate(PEGMA) was synthesized by ATRP with macroinitiator which was synthesized from the monodispersed polystyrene(Mn=12000). The molecular weight of obtained PS-b-PEGMA was 22,000.
본 연구에서는 기존의 이차전지의 분리막보다 좋은 성능으로 각광받고 있는 PVdF (poly(vinylidene fluoride))에 공극률을 높여 전지의 성능을 향상시켜주는 수용성 고분자인 PEG (Poly(ethylene glycol))를 첨가하여 충전용 리튬 이차전지의 분리막을 상전이 방법으로 제조하였다. 용매인 DMF (N,N-dimethylformamide)에 PVdF-PEG를 단일상으로 녹인 후 깨끗한 유리판에 캐스팅하여 막을 얻었다. 기공은 증류수로 채워진 응고조에서 용매-빈용매 교환으로 형성되어진다. 주사전자현미경(scanning electron microscopy, SEM)을 이용하여 분리막의 단면 관찰을 통해 다공성을 확인하였고 UTM (universal testing machine)을 이용하여 기계적 물성을 확인하였다. PEG-10의 정체시간 30 s에서 균일한 스폰지 구조를 확인할 수 있었으며, 이는 87%의 뛰어난 공극률을 가지며 인장강도의 경우 PEG-10에서 3.72 MPa로 가장 크게 나타났고, 신장률과 모듈러스 부분에서도 역시 75.45%와 275.27 MPa로 뛰어난 성능을 나타냈다.
생분해성 양쪽성 고분자를 이용하여 수용액에 존재하는 소수성 오염물질(페놀, 4-니트로페놀, 벤젠, 톨루엔) 및 중금속(Cs+,;Mg2+,;Cu2+,;Ni2+,;Cr3)을 제거하였다. 친수성을 띤 단량체로써 분자량이 서로 다른(1,100 그리고 5,000) methoxy poly(ethylene glycol) (MPEG)를 이용해 합성하였다. 투과실험 결과 상대적으로 분자량이 작은 MPEG를 이용해 합성한 경우보다 분자량이 큰 MPEG를 사용하였을 때 더 높은 제거율을 나타내었다. 한외여과공정을 이용해 오염물 없이 생분해성 나노파티클을 투과한 결과 나노파티클 용액의 농도가 100 mg/L 이상인 경우 나노 파티클 제거율은 98% 이상이었다. 소수성을 나타내는 오염원 제거시 소수성이 큰 오염원일수록 더 높은 제거율을 보였다. 또한 금속이온의 경우는 3가, 2가, 1가 이온의 순서로 제거율이 높았다.