검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2012.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The electrical properties of a laminated SMD type PTC thermistor for microcircuit protection were investigated as a function of polymer blowing agent addition. Green ceramics for multilayered BaTiO3-based PTCRs were formed by doctor blade method of barium titanate powders; we successfully laminated the sintered ceramic chips to obtain 10 layer chip PTCRs with PTC effect. The sintered density increases with increasing sintering temperature. The electrical properties of the sintered samples were strongly dependent on the calcination and addition of a polymer blowing agent. When BaTiO3 powders containing 0.2 mol% of Y2O3 were calcined at 1000˚C for 2 hrs, the resistivity jump was of 1-2 orders of magnitude. The resistivity at room temperature increases according to the polymer blowing agent addition. Also, the sample using the calcined powder showed a lower resistivity than that of the sample prepared using powders without calcinations. With an increase in the OBSH, the magnitude of the resistivity jumped as a function of the temperature increase. The resistivity of the sintered bodies after the addition of 0.5 wt% polymer blowing agent at 1290˚C for 2 h was shown to be about 8.5Ω·cm; the jump order of the sintered bodies was shown to be on the order of 102.
        4,000원
        2.
        2010.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The influences of Na and K content on the crystal phase, the microstructure and the electrical property of BaTiO3-based thermistors was found to show typical PTC effects. The crystal phase of powder calcined at 1000˚C for 4hrs showed a single phase with BaTiO3, and the crystal structure was transformed from tetragonal to cubic phase according to added amounts of Na and K. In XRD results at 43˚~47˚, the (Ba0.858Na0.071K0.071)(Ti0.9985Nb0.0015)O3-δ showed (002) and (200) peaks but the (Ba0.762Na0.119K0.119)(Ti0.9975Nb0.0025)O3-δ showed (002), (020) and (200) peaks. In sintered bodies, those calcined at 600˚C rather than at 1000˚C were dense, and for certain amounts of Na and K showed rapid decreases in grain size. In relative permittivity, the curie temperature due to the transformation of ferroelectric phase rose with added Na and K but decreased in terms of relative permittivity. In the result of the R-T curve, the sintered bodies have curie temperatures of about 140˚C and the resistivity of sintered bodies have scores of Ω·cm; the jump order of sintered bodies was shown to be more than 104 in powder calcined at 1000˚C.
        4,000원
        3.
        2010.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The microstructure and positive temperature coefficient of resistivity (PTCR) characteristics of 0.1mol%Na2Ti6O13doped 0.94BaTiO3-0.06(Bi0.5Na0.5)TiO3 (BBNT-NT001) ceramics sintered at various temperatures from 1200oC to 1350oC wereinvestigated in order to develop eco-friendly PTCR thermistors with a high Curie temperature (TC). Resulting thermistors showeda perovskite structure with a tetragonal symmetry. When sintered at 1200oC, the specimen had a uniform microstructure withsmall grains. However, abnormally grown grains started to appear at 1250oC and a homogeneous microstructure with large grainswas exhibited when the sintering temperature reached 1325oC. When the temperature exceeded 1325oC, the grain growth wasinhibited due to the numerous nucleation sites generated at the extremely high temperature. It is considered that Na2Ti6O13 isresponsible for the grain growth of the 0.94BaTiO3-0.06(Bi0.5Na0.5)TiO3 ceramics by forming a liquid phase during the sinteringat around 1300oC. The grain growth of the BBNT-NT001 ceramics was significantly correlated with a decrease of resistivity.All the specimens were observed to have PTCR characteristics except for the sample sintered at 1200oC. The BBNT-NT001ceramics had significantly decreased ñrt and increased resistivity jump with increasing sintering temperature at from 1200oC to1325oC. Especially, the BBNT-NT001 ceramics sintered at 1325oC exhibited superior PTCR characteristics of low resistivityat room temperature (122Ω·cm), high resistivity jump (1.28×104), high resistivity temperature factor (20.4%/oC), and a highTc of 157.9oC.
        4,000원