In the seismic design of building structural members, due to the complexity of the placement of PC steels in prestressed concrete members, it is necessary to review and define the definition of member damage in comparison with reinforced concrete members.In this study, the results of past experiments compared with the calculation results by ‘section Analysis Method’, with the aim of reviewing the precision of calculation results when member damage evaluation is performed using the section analysis method. Furthermore, it is also compared with the calculation results by the ‘split Element Method’.In addition, parametric studies were carried out, and the influence of the difference between the amount of PC steels and reinforced bar on the residual strain was examined.
In order to evaluate a stress state of concrete according to the change of tensile force of prestressed beam, improved nonlinear resonant ultrasonic spectroscopy(NRUS) method is proposed. This technique is advantageous to evaluate the stress state in initial state because the method shows much higher sensitivity than existing linear ultrasonic methods. The NRUS technique measure a nonlinearity parameter, which is calculated from the resonant frequency shift of ultrasonic wave related to the medium state, and the result is also closely related to the stress state of concrete. In this study, the nonlinearity parameter was measured with the change of tensile force to verify the close relationship between the two factors, and the effect of repetitive load cycle on the change of nonlinearity parameter was analyzed. In addition, sensitivity comparison with the linear ultrasonic pulse velocity method was performed. Through the experimental results, the possibility of NRUS technique for the evaluation of stress state in prestressed beam was confirmed.
In this paper, a new waffle-shaped(WAS) precast concrete panel was developed through the geometrical modification of the conventional double tee panel. It is a one-way joisted panel with a shallow depth and a boxed shape by wide edge beams. To investigate the structural performance of the connections between W AS panels, loading tests called by WIW were performed at the connections along short edges of two WAS panels. WIW tests were executed according to two different width of shear key(50mm and 80mm) and three types of reinforced topping concrete(wire-mesh alone, wire-mesh plus HD 10, and wire-mesh plus HD13). As a result, the grouting width of shear keys did not act on the ultimate behaviors significantly, and the flexural strength of WIW connections along the long edges of W AS panels was superior to nominal flexural strength. The connections with proper details of steel reinforcement can distribute the positive bending moment at mid-span of W AS panels to the negative moment, which is useful for efficient member design.
Time dependent finite element formulation for age-dependent torsional analysis of prestressed concrete flexural member was derived based on the time-independent finite element formulation. In the formulation, torsional creep was considered to predict torsion behavior of beam structure. Two-span prestressed double T-beam was analyzed to observe the effect of torsion creep.
Preflex (PF) composite girder is one that the prestressed force are readily applied to the steel beam and concrete is then cast to the steel beam, so that the elastic force of steel girder introduces prestressing effect to the steel-concrete composite girder. The major advantage of PF composite girders is to reduce the height of section. This study proposes a new Represtressed Preflex Composite Girder(RPF) composite girder that minimizes the amount of steel beam utilizing a temporary steel beam. The proposed RPF girder introduces the preflex effect to the full composite action between main steel beam and temporary beam. As a part of this study, finite element model has been developed and parametric studies are conducted to further investigate the characteristics of the proposed girder.
The tendon loss of the pre-stressed composite member is affected immediate elastic loss and time-dependent loss. For the efficient and safe pre-stressed member design, precision calculation method is required. In this paper, experimental study and comparison analysis is conducted by measuring of tendon loss. Later, the experimental investigation would be conduct to make an estimate method of tendon loss considering effects between steel and reinforced concrete.
In this study, a structural performances of prestressed composite beam with steel pipe sleeves was verified. Steel pipe sleeves in the composite beam provide the convenience of piping and facility plans. To evaluate the flexural capacity of the composite beam, analytical and experimental investigation of four test specimens has progressed.