검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13

        1.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        음식물류폐기물 직매립, 해양투기 등이 금지됨에 따라 음식물류폐기물은 대부분 자원화를 통해 처리되며 퇴비화하여 생산한 음식물류혼합퇴비(이 하, 음폐퇴비)는 작물 생산성을 향상 등을 위하여 농경지에 퇴비로 사용한다. 하지만, 염분 집적에 의한 작물 생육이 우려되며 이에 따른 피해를 줄이기 위하여 음폐퇴비와 블랙카본, 유용 미생물을 함께 사용하면 염분에 의한 피해를 줄일 수 있을 것으로 기대된다. 이에 본 연구는 음폐퇴비와 바이오차의 한 종류인 블랙카본, 유용 미생물을 처리 시 상추의 수량과 토양 특성 변화를 알아보고자 하였다. 처리구는 무비구(NF), 무기질 비료 (NPK), 무기질 비료 + 음폐퇴비 (NPKF, 대조구), 무기질 비료 + 음폐퇴비 + 블랙 카본 (NPKFC), 무기질 비료 + 음폐퇴비 + 미생물 (NPKFB), 무기질 비료 + 음폐퇴비 + 블랙카본 + 미생물 (NPKFCB)이다. 상추 생육 조사 결과, 생육 후기인 21일째에 NPKFCB 처리구에서 엽장 20.7 cm, 엽폭 20.2 cm, SPAD-502 32.0으로 가장 생육이 좋았으며, 수량 조사 결과 또한 NPKFCB 처리구에서 주당 총 엽수가 28.8개로 가장 많았다. 수량지수는 무처리가 84.1로 가장 낮았고 NPKFCB 처리구에서 128.7로 가장 높았다. 이는 블랙카본에서 공급되는 K, P, Ca 등의 양분과 미생물 활성화가 작물 생산성 향상에 도움을 준 것으로 판단된다. 토양 화학성 분석 결과 pH는 NPKFB 처리구에서 6.9로 가장 높았으며, EC는 NPKF에서 1.7 dS m-1로 가장 높았다.
        4,000원
        2.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Because of depletion of fossil fuel from the earth curst and increase of environmental concerns, in search of an efficient alternative to the traditional carbon black (CB), a biochar known as rice husk carbon (RHC) has been examined here as a filler material to develop the EPDM composite. In this regard, the ball milled RHC was further treated with ultrasonic wave and used with or without its surface treatment by the silane coupling agent [i.e., 3-mercaptopropyl triethoxysilane (3-MPTMS)]. Among the RHC, ultrasonic treated RHC (UHC) and silane treated UHC (USHC), the EPDM composite of USHC showed nearly similar tensile strength to that of the CB (e.g., CB: 33.88 kgf/cm2, USHC: 31.38 kgf/cm2 at 20 wt% filler loading) with an enhanced elongation at break (e.g., CB: 206%, USHC: 342% at 20 wt% filler loading) and surprisingly much less compression set value (CB: 40.87%, USHC: 18.95% even after 40 wt% of filler loading). Compared to RHC, the UHC also showed its better performance next to the USHC. In addition to presence of both the carbon and silica in RHC and additional silica within the flexible aliphatic chain in USHC, the disintegration of RHC by ultrasonic treatment towards its narrow particle distribution, smaller particle size, and increased surface area is considered very much effective to develop the corresponding high performance EPDM composites. Thus, the use of waste material, i.e., rice husk through the ultrasonication of RHC followed by its surface treatment can be used as a potential filler material to prepare the environment friendly and cost effective high performing composites to be used in different efficient end products, and motivated further for industrial upscaling.
        4,000원
        3.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 polypropylene glycol(PPG) 을 이용한 수분산 폴리우레탄에 카제인을 그래프트 합성한 다음 카본블랙을 분산하여 발생하는 변화를 분석하였다. 이를 위해 카제인을 그래프트한 수분산 폴리우레탄 (PUD와 CPUD’s) 시료를 준비한뒤 카본블랙이 분산된 CPCB’s 시료를 준비하였다. 준비된 시료를 이용하여 인장강도를 측정 한 결과 카제인이 높게 함유된 CPUD3 가 3.01 kgf/㎟ 로 인장강도가 증가하였으며, CPCB’s 에서는 카본 블랙이 증가할수록 인장강도가 2.54 kgf/㎟ 로 낮게 측정되었다. 연신율은 카제인이 적게 함유된 PUD 시료가 278 % 로 측정되었으며, CPCB’s에서는 CP3CB4 가 157% 로 측정되었다. 내마모성은 CPUD3 시료가 36.97 mg.loss, CP3CB4가 41.11 mg.loss 로 표면 강도가 측정되었다. 내용제성은 PUD’s 시료와 CPCB’s 시료 양쪽 모두 물성변화가 없음을 확인 할 수 있었다.
        4,000원
        4.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon composites for flexible fiber heating element were examined to improve the electrical conductivity in this study. Carbon composites using carbon black, denka black, super-c, super-p with/without CNF or dispersant such as BCS03 and Sikament-nn were prepared. Carbon composite slurry was coated on plane film and yarns(cotton, polyester) and the performances of prepared heating materials were investigated by checking electrical surface resistance, adhesion strength. The plane heating element using carbon black under natural drying condition(25℃) had better physical properties such as surface resistance(185.3 Ohm/sq) and adhesion strength(above 90%) than those of other carbon composite heating elements. From these results, polyester heating element coated by carbon black showed better electrical line resistance(33.2 kOhm/cm) than cotton heating element. Then, it was found that polyester heating element coated by carbon black with CNF(3 wt%) and BCS03(1 wt%) appeared best properties(0.604 kOhm/cm).
        4,000원
        5.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon-based electric double-layer capacitors are being evaluated as potential energy-storage devices in an expanding number of applications. In this study, samples of carbon black (CB) treated at different temperatures ranging from 650℃ to 1100℃ were used as electrodes to improve the efficiency of a capacitor. The surface properties of the heat-treated CB samples were characterized by X-ray photoelectron spectroscopy and X-ray diffraction. The effect of the heat-treatment temperature on the electrochemical behaviors was investigated by cyclic voltammetry and in galvanostatic charge-discharge experiments. The experimental results showed that the crystallinity of the CBs increased as the heat-treatment temperature increased. In addition, the specific capacitance of the CBs was found to increase with the increase in the heat-treatment temperature. The maximum specific capacitance was 165 F·g-1 for the CB sample treated at 1000℃.
        3,000원
        6.
        2011.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        It is known that the relative dielectric constant of insulating polyethylene matrix composites with conducting materials (such as carbon black and metal powder) increases as the conducting material content increases below the percolation threshold. Below the percolation threshold, dielectric properties show an ohmic behavior and their value is almost the same as that of the matrix. The change is very small, but its origin is not clear. In this paper, the dielectric properties of carbon black-filled polyethylene matrix composites are studied based on the effect medium approximation theory. Although there is a significant amount of literature on the calculation based on the theory of changing the parameters, an overall discussion taking into account the theory is required in order to explain the dielectric properties of the composites. Changes of dielectric properties and the temperature dependence of dielectric properties of the composites made of carbon particle and polyethylene below the percolation threshold for the volume fraction of carbon black have been discussed based on the theory. Above the percolation threshold, the composites are satisfied with the universal law of conductivity, whereas below the percolation threshold, they give the critical exponent of s = 1 for dielectric constant. The rate at which the percentages of both the dielectric constant and the dielectric loss factor for temperature increases with more volume fraction below the percolation threshold.
        4,000원
        7.
        2010.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The characteristics of all polymer composites containing carbon materials are determined by four factors: component properties, composition, structure and interfacial interactions. The most important filler characteristics are particle size, size distribution, specific surface area and particle shape. As a consequence, in this paper we discuss the aspects of the mechanical, electrical and thermal properties of composites with different fillers of carbon black, carbon nanotube (CNT), graphene and graphite and focus on the relationship between factors and properties, as mentioned above. Accordingly, we fabricate rubber composites that contain various carbon materials in carbon black-based and silica based-SBR matrixes with dual phase fillers and use scanning electron microscopy, Raman spectroscopy, a rhometer, an Instron tensile machine, and a thermal conductivity analyzer to evaluate composites' mechanical, fatigue, thermal, and electronic properties. In mechanical properties, hardness and 300%-modulus of graphene-composite are sharply increased in all cases due to the larger specific surface. Also, it has been found that the thermal conductivity of the CNT-composite is higher than that of any of the other composites and that the composite with graphene has the best electrical properties.
        4,000원
        8.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon blacks could be used as the filler for the electromagnetic interference (EMI) shielding. The poly vinyl alcohol (PVA) and polyvinylidene fluoride (PVDF) were used as the matrix for the carbon black fillers. Porous carbon blacks were prepared by CO2 activation. The activation was performed by treating the carbon blacks in CO2 to different degrees of burnoff. During the activation, the enlargement of pore diameters, and development of microporous and mesoporous structures were introduced in the carbon blacks, resulting in an increase of extremely large specific surface areas. The porosity of carbon blacks was an increasing function of the degree of burn-off. The surface area increased from 80 m2/g to 1142 m2/g and the total pore volume increased from 0.14073 cc·g-1 to 0.9343 cc·g-1. Also, the C=O functional group characterized by aldehydes, ketones, carboxylic acids and esters was enhanced during the activation process. The EMI shielding effectiveness (SE) of raw N330 carbon blacks filled with PVA was about 1 dB and those of the activated carbon blacks increased to the values between 6 and 9 dB. The EMI SE of raw N330 carbon blacks filled with PVDF was about 7 dB and the EMI SE increased to the range from 11 to 15 dB by the activation.
        4,000원
        9.
        2007.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The tribological properties of acrylonitrile-butadiene rubber (NBR) filled with two kinds of carbon black filler were examined. Different types of Semi-Reinforcing Furnace (SRF), and High Abrasion Furnace (HAF) blacks were used as filler material to test the influence of carbon black particle size on the friction and wear of NBR. Results from tribological tests using a ball on disk method showed that the smaller HAF particles were more effective for reducing the wear of NBR during frictional sliding. The hardness, elastic modulus at 100% elongation, and elongation at break were measured to examine the correlation between the effects of carbon black on the mechanical and tribological properties of the NBR specimens. The wear tracks of the NBR specimens were observed with scanning electron microscopy (SEM). The wear tracks for NBR with different ratios of SRF and HAF showed clearly different abrasion patterns. Mechanisms for the friction and wear behavior of NBR with different sizes of carbon black filler were proposed using evidence from wear track observation, as well as the mechanical and tribological test results.
        4,000원
        10.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Properties of carbon blacks and carbon black/SBR rubber composites filled by surface modified carbon blacks were examined. Although the specific surface area of carbon blacks increased after the surface modifications with heat, acid, and base, there were no obvious changes in resistivity. The composites filled by heat treated carbon blacks showed a higher tensile strength and elongation than those filled by raw blacks. The acid and base treated carbon blacks filled composites also showed higher tensile strength but similar elongation values with those filled by raw blacks. With increasing loading ratio, both tensile strength and elongation increased, and appeared a maximum value at 30-40 phr. Modulus at 300% strain remained increasing with further loading of carbon blacks. At the same loading, the heat treated black filled composites showed similar modulus values with composites filled by raw blacks but for base and acid treated black filled composites much higher values were obtained. After the surface modification, the functional groups which played an important role in reinforcement action were changed.
        4,000원
        11.
        2006.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Direct decomposition of methane over three types of carbon black (N330-p, N330-f, and HI-900L) was carried out in a fluidized bed quartz reactor. Properties of carbon black before and after reaction were measured and found to be related with surface structure and weight gain. For N330-p and N330-f, some carbon deposit on the surface was considered to be the reason for the increase of BET surface area and pore volume with weight gain. Carbon deposits on the surface and the conglutination of some aggregates may explain the slight increase of particle size. Properties of HI-900L changed much more significantly with weight gain. It is supposed that the increase of aggregate size of HI-900L were due to some unknown oily components. The corresponding agglomeration might be the reason for the decrease of BET surface area with weight gain, as compared with the increase of that for the case of N330 black.
        4,000원
        12.
        2003.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Electrical properties of carbon filler/PVdF [poly(vinylidene fluoride)] composite were investigated as a funtion of carbon filler/PVdF ratio in the range of 0.2~0.5. Three kinds of comercialzied conductive carbon blacks such as Hiblack 41Y, KE300J, and KE600J, and carbon nanofibers prepared by the catalytic chemical vapor deposition of C2H4 over Ni-Cu catalysts were used as the carbon fillers. The electrical conductivity of carbon filler/PVdF composites were in the range of 0.65 to 13.5 S/cm depending the fillers' electrical conductivity ranging from 5.6 to 23.1 S/cm. Among the carbon fillers used, the KE600J carbon black showed the highest conductivity both in the composite and filler itself because of its high degree of graphitization due to the high-temperature thermal treatment and its high surface area due to the activation treatment.
        4,000원
        13.
        2001.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of electrochemical surface treatments in KOH chemical solution on microstructures of carbon blacks was investigated in terms of surface functional values and XRD measurements. And their mechanical interfacial properties of the carbon blacks/rubber composites were studied by the composite tearing energy (GIIIC). It was found that the development of basic-surface functional groups lead to the significant physical changes of carbon blacks, such as, decrease of the interlayer spacing (d002), increase of the crystalline size along c-axis (Lc), and increase of degree of crystalline (χc). This treatment is possibly suitable for carbon blacks to be incorporated in a hydrocarbon rubber matrix, resulting in improving the hardness and tearing energy of the resulting composites.
        4,000원