검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study endeavors to enrich investment prospects in cryptocurrency by establishing a rationale for investment decisions. The primary objective involves evaluating the predictability of four prominent cryptocurrencies – Bitcoin, Ethereum, Litecoin, and EOS – and scrutinizing the efficacy of trading strategies developed based on the prediction model. To identify the most effective prediction model for each cryptocurrency annually, we employed three methodologies – AutoRegressive Integrated Moving Average (ARIMA), Long Short-Term Memory (LSTM), and Prophet – representing traditional statistics and artificial intelligence. These methods were applied across diverse periods and time intervals. The result suggested that Prophet trained on the previous 28 days' price history at 15-minute intervals generally yielded the highest performance. The results were validated through a random selection of 100 days (20 target dates per year) spanning from January 1st, 2018, to December 31st, 2022. The trading strategies were formulated based on the optimal-performing prediction model, grounded in the simple principle of assigning greater weight to more predictable assets. When the forecasting model indicates an upward trend, it is recommended to acquire the cryptocurrency with the investment amount determined by its performance. Experimental results consistently demonstrated that the proposed trading strategy yields higher returns compared to an equal portfolio employing a buy-and-hold strategy. The cryptocurrency trading model introduced in this paper carries two significant implications. Firstly, it facilitates the evolution of cryptocurrencies from speculative assets to investment instruments. Secondly, it plays a crucial role in advancing deep learning- based investment strategies by providing sound evidence for portfolio allocation. This addresses the black box issue, a notable weakness in deep learning, offering increased transparency to the model.
        4,000원
        2.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Fourth Industrial Revolution and sensor technology have led to increased utilization of sensor data. In our modern society, data complexity is rising, and the extraction of valuable information has become crucial with the rapid changes in information technology (IT). Recurrent neural networks (RNN) and long short-term memory (LSTM) models have shown remarkable performance in natural language processing (NLP) and time series prediction. Consequently, there is a strong expectation that models excelling in NLP will also excel in time series prediction. However, current research on Transformer models for time series prediction remains limited. Traditional RNN and LSTM models have demonstrated superior performance compared to Transformers in big data analysis. Nevertheless, with continuous advancements in Transformer models, such as GPT-2 (Generative Pre-trained Transformer 2) and ProphetNet, they have gained attention in the field of time series prediction. This study aims to evaluate the classification performance and interval prediction of remaining useful life (RUL) using an advanced Transformer model. The performance of each model will be utilized to establish a health index (HI) for cutting blades, enabling real-time monitoring of machine health. The results are expected to provide valuable insights for machine monitoring, evaluation, and management, confirming the effectiveness of advanced Transformer models in time series analysis when applied in industrial settings.
        4,900원
        5.
        2019.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        기초연구 분야는 정부의 적극적인 지원으로 양적 확대가 큰 폭으로 이루어지는 반면, 체계적인 투자계획이나 데이터에 기반한 재정소요를 제시하는 연구 및 정책자료가 전 무하여 관련 연구가 요구되는 시점이다. 이에 본 연구는 시계열 예측모형을 활용하여 기초연 구지원사업의 향후 재정소요를 전망하였다. 기초연구분야의 특성을 포함한 다양한 요인들을 종합적으로 고려하기 위하여 시간에 따른 단일 종속변수의 값을 예측하는 ARIMA 모형이 아닌, 다변수의 영향을 반영할 수 있는 ARIMAX 모형을 선택하였다. 모형 적합성 판단을 위 해 ARIMAX 모형과 ARIMA 모형의 예측값을 비교한 결과 ARIMAX 모형에서 예측오차율 이 개선됨을 확인하였다. ARIMAX 모형에 기반하여 2017년에서 2021년까지 5년 간의 기초 연구지원사업 재정소요를 전망하였다. 본 연구는 기초연구지원사업의 재정소요를 통계적 접 근방법인 시계열모형을 적용해 전망한 시범적 연구를 수행하였다는 점과, 단변량이 아닌 다 변량을 고려하여 예측력을 개선했다는 점에서 의의를 지닌다. 또한 현 정부 국정과제인 ‘기 초연구 예산 2배 확대’ 등 기초연구 투자의 중요성이 꾸준히 강조되는 정책기조를 고려할 때 향후 기초연구 투자전략 수립 시 참고자료로 활용 될 수 있다.
        6,700원
        6.
        2012.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        현재 국내에서 EM-120에 의해 검측된 틀림 데이터는 매우 불규칙적인 형태를 나타내며 데이터 분석 시 다양한 문제점 을 가지고 있다. 본 연구에서는 궤도의 효율적인 유지관리를 위해 검측된 틀림데이터의 특징과 문제점을 분석하고, 이를 보완할 수 있는 효율적인 처리 기법을 개발하였으며, 정제된 데이터의 ARIMA 분석을 통해 검측데이터와 계절 변화의 상 관관계 분석을 수행하였다. 또한 회귀모형, 지수평활법, ARIMA 모형 등 다양한 예측 모델의 적용을 통해 검측 데이터의 시계열 분석을 수행하고, 궤도 틀림 데이터의 예측 모델에 적합한 최적 모델 선정과 관련한 연구를 수행하였다.
        4,000원
        7.
        2015.12 KCI 등재 서비스 종료(열람 제한)
        수문 시계열의 분석은 수문자료를 활용한 수자원의 효율적인 운영 및 관리에 필수적인 부분이며, 특히 장기적인 수문량 예측에 널리 활용되고 있다. 이러한 수문 시계열 분석은 전통적으로 하나의 자료계열을 하나의 요인으로 파악하여 자료를 분석하고 예측해왔지만 시계열 자료가 여러 가지 요인으로 혼합되 어 하나의 자료계열로 나타내질 수 있다는 가정 하에 각 요인들을 분해하여 분석하는 방법도 널리 연구되고 있다. 본 연구에서는 경험적 모드분해법을 이용하여 주어진 수문 시계열을 다중 성분으로 분해하고 분해된 각 요소를 시계열 모형으로 재구축한 후, 구축된 요소별 시계열 모형으로부터 예측된 값을 합하여 시계열을 예측하는 방법을 이용하였으며 이를 국내 댐 유입량에 적용한 후 그 결과를 나타내었다. 기존 시계열 모형과 경험적 모드분해법을 이용한 방법의 정확도를 비교한 결과, 기존의 시계열 모형을 이용하여 자료를 예측한 결과보다 경험적 모드분해법을 적용하여 자료를 분해한 후 시계열 자료를 예측한 결과가 주어진 시계열 자료를 더 잘 나타내는 것을 알 수 있었다.
        8.
        2009.08 KCI 등재 서비스 종료(열람 제한)
        지표수 부족과 수질에 대한 불신 때문에 대체 수자원의 확보가 요구되고 있으며, 유력한 대안으로 강변여과에 관심이 모아지고 있다. 국내 최초의 강변여과는 경남 창원에서 2001년에 시작되었으며, 현재 창원시 수돗물의 100%를 여기에 의존하고 있다. 본 연구는 강변여과 취수장 부근 지하수위를 설명하는 시계열 모형의 개발에 관한 것이다. 연구 대상지역은 창원시 대산면 현장으로 11개 관측정으로부터의 5년간(2003년 1월2007년 12월) 지하수위 자료를
        9.
        2007.01 KCI 등재 서비스 종료(열람 제한)
        본 논문에서는 본 연구논제(2007)에서 개발된 COMBINE-GRNNM-GA(Type-1)으로부터 최적형태의 구조를 가진 모형을 구성하고, 입력층노드의 기상인자를 제거하기 위하여 불확실성 분석을 실시하였다. 훈련과정중에 가장 최소의 평활인자를 가진 입력층변수는 COMBINE-GRNNM-GA(Type-1)에서 제거되었으며, 변형된 COMBINE-GRNNM-GA(Type-1)은 기상학적 변수의 새로운 최소 평활인자를 구하기 위하여 재훈련된다. 최소 평활인
        10.
        2007.01 KCI 등재 서비스 종료(열람 제한)
        본 연구의 목적은 결측 혹은 미계측 증발접시 증발량과 우리나라에서 계측되고 있지 않은 알팔파 기준증발산량의 산정을 위하여 유전자 알고리즘이 내재된 일반화된 회귀신경망모형을 개발하고 적용하는데 있다. 우리나라에서는 장기간동안 증발산계를 이용하여 알팔파 기준증발산량의 관측이 시행되지 않고 있으므로, 본 연구에서는 Penman-Monteith(PM) 공식을 이용하여 산정된 값을 계측된 알팔파 기준증발산량으로 가정하였다. 본 연구를 통하여 최적 증발접시 증발량
        11.
        2006.07 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 전국 59개 지점의 3개월 SPI 자료를 가지고 EOF를 유도하고 아울러 그 공간적 특성을 분석하였다. 또한 EOF 해석에 의해 나타난 Coefficient Time Series를 다변량 시계열 모형에 적용하여 SPI 시계열을 자료기간 10,000년으로 확장하였고 전국적인 가뭄심도를 판단하기 위해 전국 평균 지수를 이용하여 재현기간별 최대심도를 결정하였다. 마지막으로 각 대권역의 댐 유효저수량과 농경지 면적을 이용하여 농업가뭄 대비능력을
        12.
        2000.02 KCI 등재 서비스 종료(열람 제한)
        As the tideland reclamation is done on a large scale these days, construction work is active in the coastal areas. Facilities in the coastal areas must be built with the tide characteristics taken into consideration. Thus the tide characteristics affect the overall reclamation plan. The analysis of the tide data boils down to a harmonic analysis of the hourly changes of long-term tide data and extraction of unharmonic coefficients from the results. Since considerable amount of tide data for the West Coast are available, the existing data can be collected and can be used to obtain the temporal changes of the tide by being fitted into the tide prediction model. The goal of this thesis lies in assessing whether the mean sea level used in the field agrees with the analysis results from the long-term observation data obtained with their homogeneity guaranteed. To achieve this goal, the research was conducted as follows. First the present conditions of the observation stations, the land level standard, and the sea level standard were surveyed to derive a vertical standard. Then the causes for the changes in the mean sea level were analyzed to set up a time series model formula for representing them. To secure the homogeneity of the time series, each component was separated. Lastly the mean sea level used in the field was assessed based on the results obtained from the analysis of the time series.