검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        2.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, ultrasonic spray pyrolysis combined with salt-assisted decomposition, a process that adds sodium nitrate (NaNO3) into a titanium precursor solution, is used to synthesize nanosized titanium dioxide (TiO2) particles. The added NaNO3 prevents the agglomeration of the primary nanoparticles in the pyrolysis process. The nanoparticles are obtained after a washing process, removing NaNO3 and NaF from the secondary particles, which consist of the salts and TiO2 nanoparticles. The effects of pyrolysis temperature on the size, crystallographic characteristics, and bandgap energy of the synthesized nanoparticles are systematically investigated. The synthesized TiO2 nanoparticles have a size of approximately 2–10 nm a bandgap energy of 3.1–3.25 eV, depending on the synthetic temperature. These differences in properties affect the photocatalytic activities of the synthesized TiO2 nanoparticles.
        4,000원
        3.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Current synthesis processes for titanium dioxide (TiO2) nanoparticles require expensive precursors or templates as well as complex steps and long reaction times. In addition, these processes produce highly agglomerated nanoparticles. In this study, we demonstrate a simple and continuous approach to synthesize TiO2 nanoparticles by a salt-assisted ultrasonic spray pyrolysis method. We also investigate the effect of salt content in a precursor solution on the morphology and size of synthesized products. The synthesized TiO2 nanoparticles are systematically characterized by X-ray diffraction, transmission electron micrograph, and UV-Vis spectroscopy. These nanoparticles appear to have a single anatase phase and a uniform particle-size distribution with an average particle size of approximately 10 nm. By extrapolating the plots of the transformed Kubelka-Munk function versus the absorbed light energy, we determine that the energy band gap of the synthesized TiO2 nanoparticles is 3.25 eV
        4,000원
        4.
        2018.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Copper oxide thin films are deposited using an ultrasonic-assisted spray pyrolysis deposition (SPD) system. To investigate the effect of substrate temperature and incorporation of a chelating agent on the growth of copper oxide thin films, the structural and optical properites of the copper oxide thin films are analyzed by X-ray diffraction (XRD), field-emssion scanning electron microscopy (FE-SEM), and UV-Vis spectrophotometry. At a temperature of less than 350 ℃, threedimensional structures consisting of cube-shaped Cu2O are formed, while spherical small particles of the CuO phase are formed at a temperature higher than 400 ℃ due to a Volmer-Weber growth mode on the silicon substrate. As a chelating agent was added to the source solutions, two-dimensional Cu2O thin films are preferentially deposited at a temperature less than 300 ℃, and the CuO thin film is formed even at a temperature less than 350 ℃. Therefore the structure and crystalline phase of the copper oxide is shown to be controllable.
        4,000원
        5.
        2018.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Li-incorporated ZnO thin films were deposited by using ultrasonic-assisted spray pyrolysis deposition (SPD) system. To investigate the effect of Li-incorporation on the performance of ZnO thin films, the structural, electrical, and optical properites of the ZnO thin films were analyzed by means of X-ray diffraction (XRD), field-emssion scanning electron microscopy (FE-SEM), Hall effect measurement, and UV-Vis spectrophotometry with variation of the Li concentraion in the ZnO sources. Without incorporation of Li element, the ZnO surface showed large spiral domains. As the Li content increases, the size of spiral domains decreased gradually, and finally formed mixed small grain and one-dimensional nanorod-like structures on the surface. This morphological evolution was explained based on an anti-surfactant effect of Li atoms on the ZnO growth surface. In addition, the Li-incorporation changed the optical and electrical properties of the ZnO thin films by modifying the crystalline defect structures by doping effects.
        4,000원
        6.
        2018.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Large-size graphene samples are successfully prepared by combining ultrosonic assisted liquid phase exfoliation process with oxidation-deoxidation method. Different from previous works, we used an ultrasound-treated expanded graphite as the raw material and prepared the graphene via a facile oxidation-reduction reaction. Results of X-ray diffraction and Raman spectroscopy confirm the crystal structure of the as-prepared graphene. Scanning electron microscopy images show that this kind of graphene has a large size (with a diameter over 100 μm), larger than the graphene from graphite powder and flake graphite prepared through single oxidation-deoxidation method. Transmission electron microscopy results also reveal the thin layers of the prepared graphene (number of layers ≤3). Furthermore, the importance of preprocessing the raw materials is also proven. Therefore, this method is an attractive way for preparing graphene with large size.
        4,000원
        7.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The structural formation of inorganic nanoparticles dispersed in polymer matrices is a key technology for producing advanced nanocomposites with a unique combination of optical, electrical, and mechanical properties. Barium titanate (BaTiO3) nanoparticles are attractive for increasing the refractive index and dielectric constant of polymer nanocomposites. Current synthesis processes for BaTiO3 nanoparticles require expensive precursors or organic solvents, complicated steps, and long reaction times. In this study, we demonstrate a simple and continuous approach for synthesizing BaTiO3 nanoparticles based on a salt-assisted ultrasonic spray pyrolysis method. This process allows the synthesis of BaTiO3 nanoparticles with diameters of 20-50 nm and a highly crystalline tetragonal structure. The optical properties and photocatalytic activities of the nanoparticles show that they are suitable for use as fillers in various nanocomposites.
        4,000원
        8.
        2017.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Inorganic phosphors based on ZrO2:Eu3+ nanoparticles were synthesized by a salt-assisted ultrasonic spray pyrolysis process that is suitable for industrially-scalable production because of its continuous nature and because it does not require expensive precursors, long reaction time, physical templates or surfactant. This facile process results in the formation of tiny, highly crystalline spherical nanoparticles without hard agglomeration. The powder X-ray diffraction patterns of the ZrO2:Eu3+ (1-20 mol%) confirmed the body centered tetragonal phase. The average particle size, estimated from the Scherrer equation and from TEM images, was found to be approximately 11 nm. Photoluminescence (PL) emission was recorded under 266 nm excitation and shows an intense emission peak at 607 nm, along with other emission peaks at 580, 592 and 632 nm which are indicated in red.
        4,000원
        9.
        2012.12 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 항암효과가 뛰어난 차가버섯의 초음파 추출 공정 최적화를 위해 반응표면 분석법으로 모니터링하여 최적 추출 조건을 설정하였다. 중심합성계획법에 따라 추출 시간(), 에탄올 농도(), 추출 온도()을 요인변수로 하고 추출 수율(), 총 페놀함량(), 총 플라보노이드함량(), 갈색도()를 종속변수로 하여 시행 하였다. 실험 결과 추출 수율은 에탄올 농도와 추출 온도에 영향을 받음을 알 수 있었다. 안장점에서 추출 조건이 추출 시간 20.47min(), 에탄올 농도 42.85%(), 추출 온도 ()일 때, 최대값 18.02%로 나타났다. 총 페놀함량 또한 에탄올 농도와 추출 온도에 영향을 크게 받았다. 최대값은 71.57mg GAE/g으로 나타났으며 이때의 추출 조건은 추출시간 21.60min(), 에탄올 농도 45.19%(), 추출 온도 ()로 나타났다. 총 플라보노이드함량은 추출 온도의 영향을 받은 것으로 나타났고 안장점에서 추출 조건은 추출 시간 22.53min(), 에탄올 농도 46.37%(), 추출온도 ()였고 최대값은 35.98mg RE/g으로 예측되었다. 갈색도는 추출 시간, 에탄올 농도, 추출 온도 이 세가지 조건 모두에 영향을 크게 받았다. 안장점일 때의 추출시간 22.00min(), 에탄올 농도 46.89%(), 추출 온도 ()의 조건에서 최대값이 예측되었다. 앞에서 얻은 결과들을 바탕으로 contour map을 분석한 결과 추출시간 21.50min, 에탄올 농도 44.87%, 추출 온도 의 최적 추출 조건이 예측되었다.
        4,000원
        10.
        2019.11 KCI 등재 서비스 종료(열람 제한)
        This study evaluated the photocatalytic oxidation efficiency of volatile organic compounds by Cu2O -TiO2 under visible-light irradiation. Cu2O-TiO2 was synthesized by an ultrasonic-assisted method. The XRD result indicated successful p-n type photocatalysts. However, no diffraction peaks belonging to TiO2 were observed for the Cu2O-TiO2. The Uv-vis spectra result revealed that the synthesized Cu2O-TiO2 can be activated under visible-light irradiation. The FE-TEM/EDS result showed the formation of synthesized nanocomposites in the commercial P25 TiO2, the undoped TiO2, and Cu2O-TiO2 and componential analysis in the undoped TiO2 and Cu2O-TiO2. The photocatalytic oxidation efficiencies of benzene, toluene, ethylbenzene, and o-xylene with Cu2O-TiO2 were higher than those of P25 TiO2 and undoped TiO2. These results indicate that the prepared Cu2O-TiO2 photocatalyst can be applied effectively to control gaseous BTEX.
        11.
        2018.11 KCI 등재 서비스 종료(열람 제한)
        In this study, we evaluated the photocatalytic oxidation efficiency of aromatic volatile hydrocarbons by using WO3–doped TiO2 nanotubes (WTNTs) under visible-light irradiation. One-dimensional WTNTs were synthesized by ultrasonic-assisted hydrothermal method and impregnation. XRD analysis revealed successful incorporation of WO3 into TiO2 nanotube (TNT) structures. UV-Vis spectra exhibited that the synthesized WTNT samples can be activated under visible light irradiation. FE-SEM and TEM images showed the one-dimensional structure of the prepared TNTs and WTNTs. The photocatalytic oxidation efficiencies of toluene, ethylbenzene, and o-xylene were higher using WTNT samples than undoped TNT. These results were explained based on the charge separation ability, adsorption capability, and light absorption of the sample photocatalysts. Among the different light sources, light-emitting-diodes (LEDs) are more highly energy-efficient than 8-W daylight used for the photocatalytic oxidation of toluene, ethylbenzene, and o-xylene, though the photocatalytic oxidation efficiency is higher for 8-W daylight.